Files
bullet3/Demos3/GpuDemos/rigidbody/ConcaveScene.cpp
erwin coumans 100449d76f faster scene construction when not using instancing (avoid copy individual vertices/shapes to GPU, but do it afterwards in a batch), copy GPU data in 'writeAllBodiesToGpu' method
add option --no_instanced_collision_shapes, this only applies to the 2 benchmark screnes at the moment
always use the user specified b3Config file, so the settings can be set at runtime, not just at compile time
adjust default constants in b3Config (needs more tweaking, ideally at run-time)
2013-06-08 11:08:44 -07:00

791 lines
22 KiB
C++

#include "ConcaveScene.h"
#include "GpuRigidBodyDemo.h"
#include "Bullet3Common/b3Quickprof.h"
#include "OpenGLWindow/ShapeData.h"
#include "OpenGLWindow/GLInstancingRenderer.h"
#include "Bullet3Common/b3Quaternion.h"
#include "OpenGLWindow/b3gWindowInterface.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h"
#include "../GpuDemoInternalData.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "OpenGLWindow/OpenGLInclude.h"
#include "OpenGLWindow/GLInstanceRendererInternalData.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h"
#include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h"
#include "Bullet3OpenCL/RigidBody/b3Config.h"
#include "GpuRigidBodyDemoInternalData.h"
#include"../../Wavefront/objLoader.h"
#include "Bullet3Common/b3Transform.h"
#include "Bullet3OpenCL/NarrowphaseCollision/b3ConvexUtility.h"
#include "OpenGLWindow/GLInstanceGraphicsShape.h"
#define CONCAVE_GAPX 16
#define CONCAVE_GAPY 8
#define CONCAVE_GAPZ 16
GLInstanceGraphicsShape* createGraphicsShapeFromWavefrontObj(objLoader* obj)
{
b3AlignedObjectArray<GLInstanceVertex>* vertices = new b3AlignedObjectArray<GLInstanceVertex>;
{
// int numVertices = obj->vertexCount;
// int numIndices = 0;
b3AlignedObjectArray<int>* indicesPtr = new b3AlignedObjectArray<int>;
/*
for (int v=0;v<obj->vertexCount;v++)
{
vtx.xyzw[0] = obj->vertexList[v]->e[0];
vtx.xyzw[1] = obj->vertexList[v]->e[1];
vtx.xyzw[2] = obj->vertexList[v]->e[2];
b3Vector3 n(vtx.xyzw[0],vtx.xyzw[1],vtx.xyzw[2]);
if (n.length2()>B3_EPSILON)
{
n.normalize();
vtx.normal[0] = n[0];
vtx.normal[1] = n[1];
vtx.normal[2] = n[2];
} else
{
vtx.normal[0] = 0; //todo
vtx.normal[1] = 1;
vtx.normal[2] = 0;
}
vtx.uv[0] = 0.5f;vtx.uv[1] = 0.5f; //todo
vertices->push_back(vtx);
}
*/
for (int f=0;f<obj->faceCount;f++)
{
obj_face* face = obj->faceList[f];
//b3Vector3 normal(face.m_plane[0],face.m_plane[1],face.m_plane[2]);
if (face->vertex_count>=3)
{
b3Vector3 normal(0,1,0);
int vtxBaseIndex = vertices->size();
if (face->vertex_count<=4)
{
indicesPtr->push_back(vtxBaseIndex);
indicesPtr->push_back(vtxBaseIndex+1);
indicesPtr->push_back(vtxBaseIndex+2);
GLInstanceVertex vtx0;
vtx0.xyzw[0] = obj->vertexList[face->vertex_index[0]]->e[0];
vtx0.xyzw[1] = obj->vertexList[face->vertex_index[0]]->e[1];
vtx0.xyzw[2] = obj->vertexList[face->vertex_index[0]]->e[2];
vtx0.xyzw[3] = 0.f;//obj->vertexList[face->vertex_index[0]]->e[2];
vtx0.uv[0] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[0];
vtx0.uv[1] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[1];
GLInstanceVertex vtx1;
vtx1.xyzw[0] = obj->vertexList[face->vertex_index[1]]->e[0];
vtx1.xyzw[1] = obj->vertexList[face->vertex_index[1]]->e[1];
vtx1.xyzw[2] = obj->vertexList[face->vertex_index[1]]->e[2];
vtx1.xyzw[3]= 0.f;
vtx1.uv[0] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[0];
vtx1.uv[1] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[1];
GLInstanceVertex vtx2;
vtx2.xyzw[0] = obj->vertexList[face->vertex_index[2]]->e[0];
vtx2.xyzw[1] = obj->vertexList[face->vertex_index[2]]->e[1];
vtx2.xyzw[2] = obj->vertexList[face->vertex_index[2]]->e[2];
vtx2.xyzw[3] = 0.f;
vtx2.uv[0] = 0.5f;obj->textureList[face->vertex_index[2]]->e[0];
vtx2.uv[1] = 0.5f;obj->textureList[face->vertex_index[2]]->e[1];
b3Vector3 v0(vtx0.xyzw[0],vtx0.xyzw[1],vtx0.xyzw[2]);
b3Vector3 v1(vtx1.xyzw[0],vtx1.xyzw[1],vtx1.xyzw[2]);
b3Vector3 v2(vtx2.xyzw[0],vtx2.xyzw[1],vtx2.xyzw[2]);
normal = (v1-v0).cross(v2-v0);
normal.normalize();
vtx0.normal[0] = normal[0];
vtx0.normal[1] = normal[1];
vtx0.normal[2] = normal[2];
vtx1.normal[0] = normal[0];
vtx1.normal[1] = normal[1];
vtx1.normal[2] = normal[2];
vtx2.normal[0] = normal[0];
vtx2.normal[1] = normal[1];
vtx2.normal[2] = normal[2];
vertices->push_back(vtx0);
vertices->push_back(vtx1);
vertices->push_back(vtx2);
}
if (face->vertex_count==4)
{
indicesPtr->push_back(vtxBaseIndex);
indicesPtr->push_back(vtxBaseIndex+1);
indicesPtr->push_back(vtxBaseIndex+2);
indicesPtr->push_back(vtxBaseIndex+3);
//
GLInstanceVertex vtx3;
vtx3.xyzw[0] = obj->vertexList[face->vertex_index[3]]->e[0];
vtx3.xyzw[1] = obj->vertexList[face->vertex_index[3]]->e[1];
vtx3.xyzw[2] = obj->vertexList[face->vertex_index[3]]->e[2];
vtx3.uv[0] = 0.5;
vtx3.uv[1] = 0.5;
vtx3.normal[0] = normal[0];
vtx3.normal[1] = normal[1];
vtx3.normal[2] = normal[2];
vertices->push_back(vtx3);
}
}
}
GLInstanceGraphicsShape* gfxShape = new GLInstanceGraphicsShape;
gfxShape->m_vertices = vertices;
gfxShape->m_numvertices = vertices->size();
gfxShape->m_indices = indicesPtr;
gfxShape->m_numIndices = indicesPtr->size();
for (int i=0;i<4;i++)
gfxShape->m_scaling[i] = 1;//bake the scaling into the vertices
return gfxShape;
}
}
void ConcaveScene::createConcaveMesh(const ConstructionInfo& ci, const char* fileName, const b3Vector3& shift, const b3Vector3& scaling)
{
objLoader* objData = new objLoader();
FILE* f = 0;
char relativeFileName[1024];
{
const char* prefix[]={"./","../","../../","../../../","../../../../"};
int numPrefixes = sizeof(prefix)/sizeof(char*);
for (int i=0;i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],fileName);
f = fopen(relativeFileName,"r");
if (f)
{
break;
}
}
}
if (f)
{
fclose(f);
f=0;
}
else
return;
objData->load(relativeFileName);
int index=10;
{
GLInstanceGraphicsShape* shape = createGraphicsShapeFromWavefrontObj(objData);
b3AlignedObjectArray<b3Vector3> verts;
for (int i=0;i<shape->m_numvertices;i++)
{
for (int j=0;j<3;j++)
shape->m_vertices->at(i).xyzw[j] += shift[j];
b3Vector3 vtx(shape->m_vertices->at(i).xyzw[0],
shape->m_vertices->at(i).xyzw[1],
shape->m_vertices->at(i).xyzw[2]);
verts.push_back(vtx*scaling);
}
int colIndex = m_data->m_np->registerConcaveMesh(&verts,shape->m_indices,b3Vector3(1,1,1));
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&shape->m_vertices->at(0).xyzw[0], shape->m_numvertices, &shape->m_indices->at(0), shape->m_numIndices);
b3Quaternion orn(0,0,0,1);
b3Vector4 color(0.3,0.3,1,1.f);//0.5);//1.f
{
float mass = 0.f;
b3Vector3 position(0,0,0);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
delete objData;
}
void ConcaveScene::setupScene(const ConstructionInfo& ci)
{
if (1)
{
//char* fileName = "data/slopedPlane100.obj";
//char* fileName = "data/plane100.obj";
// char* fileName = "data/plane100.obj";
//char* fileName = "data/teddy.obj";//"plane.obj";
// char* fileName = "data/sponza_closed.obj";//"plane.obj";
//char* fileName = "data/leoTest1.obj";
char* fileName = "data/samurai_monastry.obj";
// char* fileName = "data/teddy2_VHACD_CHs.obj";
b3Vector3 shift1(0,0,0);//0,230,80);//150,-100,-120);
b3Vector4 scaling(4,4,4,1);
// createConcaveMesh(ci,"data/plane100.obj",shift1,scaling);
//createConcaveMesh(ci,"data/plane100.obj",shift,scaling);
// b3Vector3 shift2(0,0,0);//0,230,80);//150,-100,-120);
// createConcaveMesh(ci,"data/teddy.obj",shift2,scaling);
// b3Vector3 shift3(130,-150,-75);//0,230,80);//150,-100,-120);
// createConcaveMesh(ci,"data/leoTest1.obj",shift3,scaling);
createConcaveMesh(ci,"data/samurai_monastry.obj",shift1,scaling);
} else
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
{
b3Vector4 scaling(400,0.001,400,1);
int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
b3Vector3 position(0,-2,0);
b3Quaternion orn(0,0,0,1);
b3Vector4 color(0,0,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(0.f,position,orn,colIndex,index,false);
}
}
createDynamicObjects(ci);
m_data->m_rigidBodyPipeline->writeAllInstancesToGpu();
float camPos[4]={0,0,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(25);
}
void ConcaveScene::createDynamicObjects(const ConstructionInfo& ci)
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
if (1)
{
int curColor = 0;
b3Vector4 colors[4] =
{
b3Vector4(1,1,1,1),
b3Vector4(1,1,0.3,1),
b3Vector4(0.3,1,1,1),
b3Vector4(0.3,0.3,1,1),
};
b3ConvexUtility* utilPtr = new b3ConvexUtility();
b3Vector4 scaling(1,1,1,1);
{
b3AlignedObjectArray<b3Vector3> verts;
unsigned char* vts = (unsigned char*) cube_vertices;
for (int i=0;i<numVertices;i++)
{
float* vertex = (float*) &vts[i*strideInBytes];
verts.push_back(b3Vector3(vertex[0]*scaling[0],vertex[1]*scaling[1],vertex[2]*scaling[2]));
}
bool merge = true;
if (numVertices)
{
utilPtr->initializePolyhedralFeatures(&verts[0],verts.size(),merge);
}
}
// int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
int colIndex=-1;
if (ci.m_useInstancedCollisionShapes)
colIndex = m_data->m_np->registerConvexHullShape(utilPtr);
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
if (!ci.m_useInstancedCollisionShapes)
colIndex = m_data->m_np->registerConvexHullShape(utilPtr);
float mass = 1;
//b3Vector3 position(-2*ci.gapX+i*ci.gapX,25+j*ci.gapY,-2*ci.gapZ+k*ci.gapZ);
b3Vector3 position(-(ci.arraySizeX/2)*CONCAVE_GAPX+i*CONCAVE_GAPX,3+j*CONCAVE_GAPY,-(ci.arraySizeZ/2)*CONCAVE_GAPZ+k*CONCAVE_GAPZ);
b3Quaternion orn(0,0,0,1);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
}
void ConcaveCompoundScene::setupScene(const ConstructionInfo& ci)
{
ConcaveScene::setupScene(ci);
float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(40);
}
void ConcaveCompound2Scene::createDynamicObjects(const ConstructionInfo& ci)
{
objLoader* objData = new objLoader();
char* fileName = "data/teddy2_VHACD_CHs.obj";
//char* fileName = "data/cube_offset.obj";
b3Vector3 shift(0,0,0);//0,230,80);//150,-100,-120);
b3Vector4 scaling(1,1,1,1);
FILE* f = 0;
char relativeFileName[1024];
{
const char* prefix[]={"./","../","../../","../../../","../../../../"};
int numPrefixes = sizeof(prefix)/sizeof(char*);
for (int i=0;i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],fileName);
f = fopen(relativeFileName,"r");
if (f)
{
fclose(f);
break;
}
}
}
if (f)
fclose(f);
else
return;
objData->load(relativeFileName);
if (objData->objectCount>0)
{
int strideInBytes = 9*sizeof(float);
b3AlignedObjectArray<GLInstanceVertex> vertexArray;
b3AlignedObjectArray<int> indexArray;
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
int colIndex = 0;
b3AlignedObjectArray<GLInstanceVertex> vertices;
int stride2 = sizeof(GLInstanceVertex);
b3Assert(stride2 == strideInBytes);
{
b3AlignedObjectArray<b3GpuChildShape> childShapes;
int numChildShapes = objData->objectCount;
for (int i=0;i<numChildShapes;i++)
// int i=4;
{
obj_object* object = objData->objectList[i];
int numVertices = i==numChildShapes-1? objData->vertexCount-object->vertex_offset : objData->objectList[i+1]->vertex_offset - object->vertex_offset;
int numFaces = i==numChildShapes-1? objData->faceCount - object->face_offset : objData->objectList[i+1]->face_offset-object->face_offset;
//for now, only support polyhedral child shapes
b3GpuChildShape child;
b3Vector3 pos(0,0,0);
b3Quaternion orn(0,0,0,1);
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
b3Transform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int baseIndex = vertexArray.size();
for (int f=0;f<numFaces;f++)
{
obj_face* face = objData->faceList[object->face_offset+f];
if (face->vertex_count==3)
{
for (int i=0;i<3;i++)
{
indexArray.push_back(face->vertex_index[i]);//-object->vertex_offset);
}
} else
{
b3Assert(0);
}
}
b3Vector3 center(0,0,0);
b3AlignedObjectArray<GLInstanceVertex> tmpVertices;
//add transformed graphics vertices and indices
b3Vector3 myScaling(1,1,1);//50,50,50);//300,300,300);
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert;
obj_vector* orgVert = objData->vertexList[object->vertex_offset+v];
vert.uv[0] = 0.5f;
vert.uv[1] = 0.5f;
vert.normal[0]=0.f;
vert.normal[1]=1.f;
vert.normal[2]=0.f;
b3Vector3 vertPos;
vertPos[0] = orgVert->e[0]*myScaling[0];
vertPos[1] = orgVert->e[1]*myScaling[1];
vertPos[2] = orgVert->e[2]*myScaling[2];
vertPos[3] =0.f;
center+=vertPos;
}
center/=numVertices;
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert;
obj_vector* orgVert = objData->vertexList[object->vertex_offset+v];
vert.uv[0] = 0.5f;
vert.uv[1] = 0.5f;
vert.normal[0]=0.f;
vert.normal[1]=1.f;
vert.normal[2]=0.f;
b3Vector3 vertPos;
vertPos[0] = orgVert->e[0]*myScaling[0];
vertPos[1] = orgVert->e[1]*myScaling[1];
vertPos[2] = orgVert->e[2]*myScaling[2];
vertPos[3] =0.f;
// vertPos-=center;
vert.xyzw[0] = vertPos[0];
vert.xyzw[1] = vertPos[1];
vert.xyzw[2] = vertPos[2];
tmpVertices.push_back(vert);
b3Vector3 newPos = tr*vertPos;
vert.xyzw[0] = newPos[0];
vert.xyzw[1] = newPos[1];
vert.xyzw[2] = newPos[2];
vert.xyzw[3] = 0.f;
vertexArray.push_back(vert);
}
int childColIndex = m_data->m_np->registerConvexHullShape(&tmpVertices[0].xyzw[0],strideInBytes,numVertices, scaling);
child.m_shapeIndex = childColIndex;
childShapes.push_back(child);
colIndex = childColIndex;
}
colIndex= m_data->m_np->registerCompoundShape(&childShapes);
}
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size());
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,0,1,1),
b3Vector4(0,1,1,1),
};
int curColor = 0;
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1;//j==0? 0.f : 1.f;
//b3Vector3 position(i*10*ci.gapX,j*ci.gapY,k*10*ci.gapZ);
b3Vector3 position(i*10*ci.gapX,10+j*ci.gapY,k*10*ci.gapZ);
// b3Quaternion orn(0,0,0,1);
b3Quaternion orn(b3Vector3(0,0,1),1.8);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(1,1,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
delete objData;
}
void ConcaveCompoundScene::createDynamicObjects(const ConstructionInfo& ci)
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
b3AlignedObjectArray<GLInstanceVertex> vertexArray;
b3AlignedObjectArray<int> indexArray;
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
float scaling[4] = {1,1,1,1};
int colIndex = 0;
GLInstanceVertex* cubeVerts = (GLInstanceVertex*)&cube_vertices[0];
int stride2 = sizeof(GLInstanceVertex);
b3Assert(stride2 == strideInBytes);
{
int childColIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
b3Vector3 childPositions[3] = {
b3Vector3(0,-2,0),
b3Vector3(0,0,0),
b3Vector3(0,0,2)
};
b3AlignedObjectArray<b3GpuChildShape> childShapes;
int numChildShapes = 3;
for (int i=0;i<numChildShapes;i++)
{
//for now, only support polyhedral child shapes
b3GpuChildShape child;
child.m_shapeIndex = childColIndex;
b3Vector3 pos = childPositions[i];
b3Quaternion orn(0,0,0,1);
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
childShapes.push_back(child);
b3Transform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int baseIndex = vertexArray.size();
for (int j=0;j<numIndices;j++)
indexArray.push_back(cube_indices[j]+baseIndex);
//add transformed graphics vertices and indices
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert = cubeVerts[v];
b3Vector3 vertPos(vert.xyzw[0],vert.xyzw[1],vert.xyzw[2]);
b3Vector3 newPos = tr*vertPos;
vert.xyzw[0] = newPos[0];
vert.xyzw[1] = newPos[1];
vert.xyzw[2] = newPos[2];
vert.xyzw[3] = 0.f;
vertexArray.push_back(vert);
}
}
colIndex= m_data->m_np->registerCompoundShape(&childShapes);
}
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size());
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,0,1,1),
b3Vector4(0,1,1,1),
};
int curColor = 0;
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1;//j==0? 0.f : 1.f;
b3Vector3 position(i*ci.gapX,50+j*ci.gapY,k*ci.gapZ);
//b3Quaternion orn(0,0,0,1);
b3Quaternion orn(b3Vector3(1,0,0),0.7);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(1,1,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
void ConcaveSphereScene::setupScene(const ConstructionInfo& ci)
{
ConcaveScene::setupScene(ci);
float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(40);
}
void ConcaveSphereScene::createDynamicObjects(const ConstructionInfo& ci)
{
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,1,1,1),
b3Vector4(1,1,0,1),
};
int index=0;
int curColor = 0;
float radius = 1;
//int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
int colIndex = m_data->m_np->registerSphereShape(radius);//>registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
int prevGraphicsShapeIndex = registerGraphicsSphereShape(ci,radius,false);
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1.f;
b3Vector3 position(-(ci.arraySizeX/2)*8+i*8,50+j*8,-(ci.arraySizeZ/2)*8+k*8);
//b3Vector3 position(0,-41,0);//0,0,0);//i*radius*3,-41+j*radius*3,k*radius*3);
b3Quaternion orn(0,0,0,1);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(radius,radius,radius,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(prevGraphicsShapeIndex,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}