work-in-progress (need to add missing data files, fix paths etc)
example:
pip install pybullet
pip install gym
python
import gym
import pybullet
import pybullet_envs
env = gym.make("HumanoidBulletEnv-v0")
114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
import math
|
|
import gym
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
import numpy as np
|
|
import time
|
|
import pybullet as p
|
|
import minitaur_new
|
|
|
|
class MinitaurGymEnv(gym.Env):
|
|
metadata = {
|
|
'render.modes': ['human', 'rgb_array'],
|
|
'video.frames_per_second' : 50
|
|
}
|
|
|
|
def __init__(self,
|
|
urdfRoot="",
|
|
actionRepeat=1,
|
|
isEnableSelfCollision=True,
|
|
motorVelocityLimit=10.0,
|
|
render=False):
|
|
self._timeStep = 0.01
|
|
self._urdfRoot = urdfRoot
|
|
self._actionRepeat = actionRepeat
|
|
self._motorVelocityLimit = motorVelocityLimit
|
|
self._isEnableSelfCollision = isEnableSelfCollision
|
|
self._observation = []
|
|
self._envStepCounter = 0
|
|
self._render = render
|
|
self._lastBasePosition = [0, 0, 0]
|
|
if self._render:
|
|
p.connect(p.GUI)
|
|
else:
|
|
p.connect(p.DIRECT)
|
|
self._seed()
|
|
self.reset()
|
|
observationDim = self._minitaur.getObservationDimension()
|
|
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
|
|
actionDim = 8
|
|
action_high = np.array([1] * actionDim)
|
|
self.action_space = spaces.Box(-action_high, action_high)
|
|
self.observation_space = spaces.Box(-observation_high, observation_high)
|
|
self.viewer = None
|
|
|
|
def _reset(self):
|
|
p.resetSimulation()
|
|
p.setPhysicsEngineParameter(numSolverIterations=300)
|
|
p.setTimeStep(self._timeStep)
|
|
p.loadURDF("%splane.urdf" % self._urdfRoot)
|
|
p.setGravity(0,0,-10)
|
|
self._minitaur = minitaur_new.Minitaur(urdfRootPath=self._urdfRoot, timeStep=self._timeStep, isEnableSelfCollision=self._isEnableSelfCollision, motorVelocityLimit=self._motorVelocityLimit)
|
|
self._envStepCounter = 0
|
|
self._lastBasePosition = [0, 0, 0]
|
|
for i in range(100):
|
|
p.stepSimulation()
|
|
self._observation = self._minitaur.getObservation()
|
|
return self._observation
|
|
|
|
def __del__(self):
|
|
p.disconnect()
|
|
|
|
def _seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def _step(self, action):
|
|
if (self._render):
|
|
basePos = self._minitaur.getBasePosition()
|
|
p.resetDebugVisualizerCamera(1, 30, 40, basePos)
|
|
|
|
if len(action) != self._minitaur.getActionDimension():
|
|
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(action)))
|
|
|
|
for i in range(len(action)):
|
|
if not -1.01 <= action[i] <= 1.01:
|
|
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
|
|
|
|
realAction = self._minitaur.convertFromLegModel(action)
|
|
self._minitaur.applyAction(realAction)
|
|
for i in range(self._actionRepeat):
|
|
p.stepSimulation()
|
|
if self._render:
|
|
time.sleep(self._timeStep)
|
|
self._observation = self._minitaur.getObservation()
|
|
if self._termination():
|
|
break
|
|
self._envStepCounter += 1
|
|
reward = self._reward()
|
|
done = self._termination()
|
|
return np.array(self._observation), reward, done, {}
|
|
|
|
def _render(self, mode='human', close=False):
|
|
return
|
|
|
|
def is_fallen(self):
|
|
orientation = self._minitaur.getBaseOrientation()
|
|
rotMat = p.getMatrixFromQuaternion(orientation)
|
|
localUp = rotMat[6:]
|
|
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0 or self._observation[-1] < 0.1
|
|
|
|
def _termination(self):
|
|
return self.is_fallen()
|
|
|
|
def _reward(self):
|
|
currentBasePosition = self._minitaur.getBasePosition()
|
|
forward_reward = currentBasePosition[0] - self._lastBasePosition[0]
|
|
self._lastBasePosition = currentBasePosition
|
|
|
|
energyWeight = 0.001
|
|
energy = np.abs(np.dot(self._minitaur.getMotorTorques(), self._minitaur.getMotorVelocities())) * self._timeStep
|
|
energy_reward = energyWeight * energy
|
|
reward = forward_reward - energy_reward
|
|
return reward
|