32 lines
702 B
Python
32 lines
702 B
Python
import numpy as np
|
|
|
|
|
|
def qrot(q, v):
|
|
"""
|
|
Rotate vector(s) v about the rotation described by quaternion(s) q.
|
|
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
|
|
where * denotes any number of dimensions.
|
|
Returns a tensor of shape (*, 3).
|
|
"""
|
|
assert q.shape[-1] == 4
|
|
assert v.shape[-1] == 3
|
|
assert q.shape[:-1] == v.shape[:-1]
|
|
|
|
qvec = q[..., 1:]
|
|
|
|
uv = np.cross(qvec, v)
|
|
uuv = np.cross(qvec, uv)
|
|
|
|
return (v + 2 * (q[..., :1] * uv + uuv))
|
|
|
|
|
|
def qinverse(q, inplace=False):
|
|
# We assume the quaternion to be normalized
|
|
if inplace:
|
|
q[..., 1:] *= -1
|
|
return q
|
|
else:
|
|
w = q[..., :1]
|
|
xyz = q[..., 1:]
|
|
return np.hstack((w, -xyz))
|