Files
bullet3/src/BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.cpp
ejcoumans 86c27a7c9d Work on fixing some GJK issues reported by Pierre Terdiman (thanks Pierre for the testbed!)
Improved this penetration test with more verbose output
retrieve worldtransform from motionstate when rigidbody gets motionstate assigned
2006-11-11 23:59:51 +00:00

328 lines
9.5 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#define NUM_UNITSPHERE_POINTS 42
static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2] =
{
btVector3(0.000000f , -0.000000f,-1.000000f),
btVector3(0.723608f , -0.525725f,-0.447219f),
btVector3(-0.276388f , -0.850649f,-0.447219f),
btVector3(-0.894426f , -0.000000f,-0.447216f),
btVector3(-0.276388f , 0.850649f,-0.447220f),
btVector3(0.723608f , 0.525725f,-0.447219f),
btVector3(0.276388f , -0.850649f,0.447220f),
btVector3(-0.723608f , -0.525725f,0.447219f),
btVector3(-0.723608f , 0.525725f,0.447219f),
btVector3(0.276388f , 0.850649f,0.447219f),
btVector3(0.894426f , 0.000000f,0.447216f),
btVector3(-0.000000f , 0.000000f,1.000000f),
btVector3(0.425323f , -0.309011f,-0.850654f),
btVector3(-0.162456f , -0.499995f,-0.850654f),
btVector3(0.262869f , -0.809012f,-0.525738f),
btVector3(0.425323f , 0.309011f,-0.850654f),
btVector3(0.850648f , -0.000000f,-0.525736f),
btVector3(-0.525730f , -0.000000f,-0.850652f),
btVector3(-0.688190f , -0.499997f,-0.525736f),
btVector3(-0.162456f , 0.499995f,-0.850654f),
btVector3(-0.688190f , 0.499997f,-0.525736f),
btVector3(0.262869f , 0.809012f,-0.525738f),
btVector3(0.951058f , 0.309013f,0.000000f),
btVector3(0.951058f , -0.309013f,0.000000f),
btVector3(0.587786f , -0.809017f,0.000000f),
btVector3(0.000000f , -1.000000f,0.000000f),
btVector3(-0.587786f , -0.809017f,0.000000f),
btVector3(-0.951058f , -0.309013f,-0.000000f),
btVector3(-0.951058f , 0.309013f,-0.000000f),
btVector3(-0.587786f , 0.809017f,-0.000000f),
btVector3(-0.000000f , 1.000000f,-0.000000f),
btVector3(0.587786f , 0.809017f,-0.000000f),
btVector3(0.688190f , -0.499997f,0.525736f),
btVector3(-0.262869f , -0.809012f,0.525738f),
btVector3(-0.850648f , 0.000000f,0.525736f),
btVector3(-0.262869f , 0.809012f,0.525738f),
btVector3(0.688190f , 0.499997f,0.525736f),
btVector3(0.525730f , 0.000000f,0.850652f),
btVector3(0.162456f , -0.499995f,0.850654f),
btVector3(-0.425323f , -0.309011f,0.850654f),
btVector3(-0.425323f , 0.309011f,0.850654f),
btVector3(0.162456f , 0.499995f,0.850654f)
};
bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& simplexSolver,
btConvexShape* convexA,btConvexShape* convexB,
const btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw
)
{
struct btIntermediateResult : public btDiscreteCollisionDetectorInterface::Result
{
btIntermediateResult():m_hasResult(false)
{
}
btVector3 m_normalOnBInWorld;
btVector3 m_pointInWorld;
float m_depth;
bool m_hasResult;
virtual void setShapeIdentifiers(int partId0,int index0, int partId1,int index1)
{
}
void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,float depth)
{
m_normalOnBInWorld = normalOnBInWorld;
m_pointInWorld = pointInWorld;
m_depth = depth;
m_hasResult = true;
}
};
//just take fixed number of orientation, and sample the penetration depth in that direction
float minProj = 1e30f;
btVector3 minNorm;
btVector3 minVertex;
btVector3 minA,minB;
btVector3 seperatingAxisInA,seperatingAxisInB;
btVector3 pInA,qInB,pWorld,qWorld,w;
#define USE_BATCHED_SUPPORT 1
#ifdef USE_BATCHED_SUPPORT
btVector3 supportVerticesABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 supportVerticesBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 seperatingAxisInABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
btVector3 seperatingAxisInBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
int i;
int numSampleDirections = NUM_UNITSPHERE_POINTS;
for (i=0;i<numSampleDirections;i++)
{
const btVector3& norm = sPenetrationDirections[i];
seperatingAxisInABatch[i] = (-norm) * transA.getBasis() ;
seperatingAxisInBBatch[i] = norm * transB.getBasis() ;
}
{
int numPDA = convexA->getNumPreferredPenetrationDirections();
if (numPDA)
{
for (int i=0;i<numPDA;i++)
{
btVector3 norm;
convexA->getPreferredPenetrationDirection(i,norm);
norm = transA.getBasis() * norm;
sPenetrationDirections[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
numSampleDirections++;
}
}
}
{
int numPDB = convexB->getNumPreferredPenetrationDirections();
if (numPDB)
{
for (int i=0;i<numPDB;i++)
{
btVector3 norm;
convexB->getPreferredPenetrationDirection(i,norm);
norm = transB.getBasis() * norm;
sPenetrationDirections[numSampleDirections] = norm;
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
numSampleDirections++;
}
}
}
convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch,supportVerticesABatch,numSampleDirections);
convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch,supportVerticesBBatch,numSampleDirections);
for (i=0;i<numSampleDirections;i++)
{
const btVector3& norm = sPenetrationDirections[i];
seperatingAxisInA = seperatingAxisInABatch[i];
seperatingAxisInB = seperatingAxisInBBatch[i];
pInA = supportVerticesABatch[i];
qInB = supportVerticesBBatch[i];
pWorld = transA(pInA);
qWorld = transB(qInB);
w = qWorld - pWorld;
float delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
#else
int numSampleDirections = NUM_UNITSPHERE_POINTS;
{
int numPDA = convexA->getNumPreferredPenetrationDirections();
if (numPDA)
{
for (int i=0;i<numPDA;i++)
{
btVector3 norm;
convexA->getPreferredPenetrationDirection(i,norm);
norm = transA.getBasis() * norm;
sPenetrationDirections[numSampleDirections] = norm;
numSampleDirections++;
}
}
}
{
int numPDB = convexB->getNumPreferredPenetrationDirections();
if (numPDB)
{
for (int i=0;i<numPDB;i++)
{
btVector3 norm;
convexB->getPreferredPenetrationDirection(i,norm);
norm = transB.getBasis() * norm;
sPenetrationDirections[numSampleDirections] = norm;
numSampleDirections++;
}
}
}
for (int i=0;i<numSampleDirections;i++)
{
const btVector3& norm = sPenetrationDirections[i];
seperatingAxisInA = (-norm)* transA.getBasis();
seperatingAxisInB = norm* transB.getBasis();
pInA = convexA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
qInB = convexB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
pWorld = transA(pInA);
qWorld = transB(qInB);
w = qWorld - pWorld;
float delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
#endif //USE_BATCHED_SUPPORT
//add the margins
minA += minNorm*convexA->getMargin();
minB -= minNorm*convexB->getMargin();
//no penetration
if (minProj < 0.f)
return false;
minProj += (convexA->getMargin() + convexB->getMargin());
//#define DEBUG_DRAW 1
#ifdef DEBUG_DRAW
if (debugDraw)
{
btVector3 color(0,1,0);
debugDraw->drawLine(minA,minB,color);
color = btVector3 (1,1,1);
btVector3 vec = minB-minA;
float prj2 = minNorm.dot(vec);
debugDraw->drawLine(minA,minA+(minNorm*minProj),color);
}
#endif //DEBUG_DRAW
btGjkPairDetector gjkdet(convexA,convexB,&simplexSolver,0);
btScalar offsetDist = minProj;
btVector3 offset = minNorm * offsetDist;
btGjkPairDetector::ClosestPointInput input;
btVector3 newOrg = transA.getOrigin() + offset;
btTransform displacedTrans = transA;
displacedTrans.setOrigin(newOrg);
input.m_transformA = displacedTrans;
input.m_transformB = transB;
input.m_maximumDistanceSquared = 1e30f;//minProj;
btIntermediateResult res;
gjkdet.getClosestPoints(input,res,debugDraw);
float correctedMinNorm = minProj - res.m_depth;
//the penetration depth is over-estimated, relax it
float penetration_relaxation= 1.f;
minNorm*=penetration_relaxation;
if (res.m_hasResult)
{
pa = res.m_pointInWorld - minNorm * correctedMinNorm;
pb = res.m_pointInWorld;
#ifdef DEBUG_DRAW
if (debugDraw)
{
btVector3 color(1,0,0);
debugDraw->drawLine(pa,pb,color);
}
#endif//DEBUG_DRAW
}
return res.m_hasResult;
}