Moved some asserts into 'btFullAssert', which is disabled by default (see btScalar.h to enable them). This is to speed-up debugging.
396 lines
12 KiB
C++
396 lines
12 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#ifndef btMatrix3x3_H
|
|
#define btMatrix3x3_H
|
|
|
|
#include "btScalar.h"
|
|
|
|
#include "btVector3.h"
|
|
#include "btQuaternion.h"
|
|
|
|
|
|
class btMatrix3x3 {
|
|
public:
|
|
btMatrix3x3 () {}
|
|
|
|
// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
|
|
|
|
explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
|
|
/*
|
|
template <typename btScalar>
|
|
Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
|
{
|
|
setEulerYPR(yaw, pitch, roll);
|
|
}
|
|
*/
|
|
btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
|
{
|
|
setValue(xx, xy, xz,
|
|
yx, yy, yz,
|
|
zx, zy, zz);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
|
|
{
|
|
return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE const btVector3& getRow(int i) const
|
|
{
|
|
return m_el[i];
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE btVector3& operator[](int i)
|
|
{
|
|
btFullAssert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE const btVector3& operator[](int i) const
|
|
{
|
|
btFullAssert(0 <= i && i < 3);
|
|
return m_el[i];
|
|
}
|
|
|
|
btMatrix3x3& operator*=(const btMatrix3x3& m);
|
|
|
|
|
|
void setFromOpenGLSubMatrix(const btScalar *m)
|
|
{
|
|
m_el[0][0] = (m[0]);
|
|
m_el[1][0] = (m[1]);
|
|
m_el[2][0] = (m[2]);
|
|
m_el[0][1] = (m[4]);
|
|
m_el[1][1] = (m[5]);
|
|
m_el[2][1] = (m[6]);
|
|
m_el[0][2] = (m[8]);
|
|
m_el[1][2] = (m[9]);
|
|
m_el[2][2] = (m[10]);
|
|
}
|
|
|
|
void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
|
|
const btScalar& yx, const btScalar& yy, const btScalar& yz,
|
|
const btScalar& zx, const btScalar& zy, const btScalar& zz)
|
|
{
|
|
m_el[0][0] = btScalar(xx);
|
|
m_el[0][1] = btScalar(xy);
|
|
m_el[0][2] = btScalar(xz);
|
|
m_el[1][0] = btScalar(yx);
|
|
m_el[1][1] = btScalar(yy);
|
|
m_el[1][2] = btScalar(yz);
|
|
m_el[2][0] = btScalar(zx);
|
|
m_el[2][1] = btScalar(zy);
|
|
m_el[2][2] = btScalar(zz);
|
|
}
|
|
|
|
void setRotation(const btQuaternion& q)
|
|
{
|
|
btScalar d = q.length2();
|
|
btFullAssert(d != btScalar(0.0));
|
|
btScalar s = btScalar(2.0) / d;
|
|
btScalar xs = q[0] * s, ys = q[1] * s, zs = q[2] * s;
|
|
btScalar wx = q[3] * xs, wy = q[3] * ys, wz = q[3] * zs;
|
|
btScalar xx = q[0] * xs, xy = q[0] * ys, xz = q[0] * zs;
|
|
btScalar yy = q[1] * ys, yz = q[1] * zs, zz = q[2] * zs;
|
|
setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
|
|
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
|
|
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
|
|
}
|
|
|
|
|
|
|
|
void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
|
|
{
|
|
|
|
btScalar cy(btCos(yaw));
|
|
btScalar sy(btSin(yaw));
|
|
btScalar cp(btCos(pitch));
|
|
btScalar sp(btSin(pitch));
|
|
btScalar cr(btCos(roll));
|
|
btScalar sr(btSin(roll));
|
|
btScalar cc = cy * cr;
|
|
btScalar cs = cy * sr;
|
|
btScalar sc = sy * cr;
|
|
btScalar ss = sy * sr;
|
|
setValue(cc - sp * ss, -cs - sp * sc, -sy * cp,
|
|
cp * sr, cp * cr, -sp,
|
|
sc + sp * cs, -ss + sp * cc, cy * cp);
|
|
|
|
}
|
|
|
|
/**
|
|
* setEulerZYX
|
|
* @param euler a const reference to a btVector3 of euler angles
|
|
* These angles are used to produce a rotation matrix. The euler
|
|
* angles are applied in ZYX order. I.e a vector is first rotated
|
|
* about X then Y and then Z
|
|
**/
|
|
|
|
void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
|
|
btScalar ci ( btCos(eulerX));
|
|
btScalar cj ( btCos(eulerY));
|
|
btScalar ch ( btCos(eulerZ));
|
|
btScalar si ( btSin(eulerX));
|
|
btScalar sj ( btSin(eulerY));
|
|
btScalar sh ( btSin(eulerZ));
|
|
btScalar cc = ci * ch;
|
|
btScalar cs = ci * sh;
|
|
btScalar sc = si * ch;
|
|
btScalar ss = si * sh;
|
|
|
|
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
|
|
cj * sh, sj * ss + cc, sj * cs - sc,
|
|
-sj, cj * si, cj * ci);
|
|
}
|
|
|
|
void setIdentity()
|
|
{
|
|
setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(1.0), btScalar(0.0),
|
|
btScalar(0.0), btScalar(0.0), btScalar(1.0));
|
|
}
|
|
|
|
void getOpenGLSubMatrix(btScalar *m) const
|
|
{
|
|
m[0] = btScalar(m_el[0][0]);
|
|
m[1] = btScalar(m_el[1][0]);
|
|
m[2] = btScalar(m_el[2][0]);
|
|
m[3] = btScalar(0.0);
|
|
m[4] = btScalar(m_el[0][1]);
|
|
m[5] = btScalar(m_el[1][1]);
|
|
m[6] = btScalar(m_el[2][1]);
|
|
m[7] = btScalar(0.0);
|
|
m[8] = btScalar(m_el[0][2]);
|
|
m[9] = btScalar(m_el[1][2]);
|
|
m[10] = btScalar(m_el[2][2]);
|
|
m[11] = btScalar(0.0);
|
|
}
|
|
|
|
void getRotation(btQuaternion& q) const
|
|
{
|
|
btScalar trace = m_el[0][0] + m_el[1][1] + m_el[2][2];
|
|
|
|
if (trace > btScalar(0.0))
|
|
{
|
|
btScalar s = btSqrt(trace + btScalar(1.0));
|
|
q[3] = s * btScalar(0.5);
|
|
s = btScalar(0.5) / s;
|
|
|
|
q[0] = (m_el[2][1] - m_el[1][2]) * s;
|
|
q[1] = (m_el[0][2] - m_el[2][0]) * s;
|
|
q[2] = (m_el[1][0] - m_el[0][1]) * s;
|
|
}
|
|
else
|
|
{
|
|
int i = m_el[0][0] < m_el[1][1] ?
|
|
(m_el[1][1] < m_el[2][2] ? 2 : 1) :
|
|
(m_el[0][0] < m_el[2][2] ? 2 : 0);
|
|
int j = (i + 1) % 3;
|
|
int k = (i + 2) % 3;
|
|
|
|
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
|
|
q[i] = s * btScalar(0.5);
|
|
s = btScalar(0.5) / s;
|
|
|
|
q[3] = (m_el[k][j] - m_el[j][k]) * s;
|
|
q[j] = (m_el[j][i] + m_el[i][j]) * s;
|
|
q[k] = (m_el[k][i] + m_el[i][k]) * s;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void getEuler(btScalar& yaw, btScalar& pitch, btScalar& roll) const
|
|
{
|
|
pitch = btScalar(btAsin(-m_el[2][0]));
|
|
if (pitch < SIMD_2_PI)
|
|
{
|
|
if (pitch > SIMD_2_PI)
|
|
{
|
|
yaw = btScalar(btAtan2(m_el[1][0], m_el[0][0]));
|
|
roll = btScalar(btAtan2(m_el[2][1], m_el[2][2]));
|
|
}
|
|
else
|
|
{
|
|
yaw = btScalar(-btAtan2(-m_el[0][1], m_el[0][2]));
|
|
roll = btScalar(0.0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
yaw = btScalar(btAtan2(-m_el[0][1], m_el[0][2]));
|
|
roll = btScalar(0.0);
|
|
}
|
|
}
|
|
|
|
btVector3 getScaling() const
|
|
{
|
|
return btVector3(m_el[0][0] * m_el[0][0] + m_el[1][0] * m_el[1][0] + m_el[2][0] * m_el[2][0],
|
|
m_el[0][1] * m_el[0][1] + m_el[1][1] * m_el[1][1] + m_el[2][1] * m_el[2][1],
|
|
m_el[0][2] * m_el[0][2] + m_el[1][2] * m_el[1][2] + m_el[2][2] * m_el[2][2]);
|
|
}
|
|
|
|
|
|
btMatrix3x3 scaled(const btVector3& s) const
|
|
{
|
|
return btMatrix3x3(m_el[0][0] * s[0], m_el[0][1] * s[1], m_el[0][2] * s[2],
|
|
m_el[1][0] * s[0], m_el[1][1] * s[1], m_el[1][2] * s[2],
|
|
m_el[2][0] * s[0], m_el[2][1] * s[1], m_el[2][2] * s[2]);
|
|
}
|
|
|
|
btScalar determinant() const;
|
|
btMatrix3x3 adjoint() const;
|
|
btMatrix3x3 absolute() const;
|
|
btMatrix3x3 transpose() const;
|
|
btMatrix3x3 inverse() const;
|
|
|
|
btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
|
|
btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
|
|
|
|
btScalar tdot(int c, const btVector3& v) const
|
|
{
|
|
return m_el[0][c] * v[0] + m_el[1][c] * v[1] + m_el[2][c] * v[2];
|
|
}
|
|
|
|
protected:
|
|
btScalar cofac(int r1, int c1, int r2, int c2) const
|
|
{
|
|
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
|
|
}
|
|
|
|
btVector3 m_el[3];
|
|
};
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3&
|
|
btMatrix3x3::operator*=(const btMatrix3x3& m)
|
|
{
|
|
setValue(m.tdot(0, m_el[0]), m.tdot(1, m_el[0]), m.tdot(2, m_el[0]),
|
|
m.tdot(0, m_el[1]), m.tdot(1, m_el[1]), m.tdot(2, m_el[1]),
|
|
m.tdot(0, m_el[2]), m.tdot(1, m_el[2]), m.tdot(2, m_el[2]));
|
|
return *this;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar
|
|
btMatrix3x3::determinant() const
|
|
{
|
|
return triple((*this)[0], (*this)[1], (*this)[2]);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::absolute() const
|
|
{
|
|
return btMatrix3x3(
|
|
btFabs(m_el[0][0]), btFabs(m_el[0][1]), btFabs(m_el[0][2]),
|
|
btFabs(m_el[1][0]), btFabs(m_el[1][1]), btFabs(m_el[1][2]),
|
|
btFabs(m_el[2][0]), btFabs(m_el[2][1]), btFabs(m_el[2][2]));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::transpose() const
|
|
{
|
|
return btMatrix3x3(m_el[0][0], m_el[1][0], m_el[2][0],
|
|
m_el[0][1], m_el[1][1], m_el[2][1],
|
|
m_el[0][2], m_el[1][2], m_el[2][2]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::adjoint() const
|
|
{
|
|
return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
|
|
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
|
|
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::inverse() const
|
|
{
|
|
btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
|
|
btScalar det = (*this)[0].dot(co);
|
|
btFullAssert(det != btScalar(0.0));
|
|
btScalar s = btScalar(1.0) / det;
|
|
return btMatrix3x3(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
|
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
|
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
|
|
{
|
|
return btMatrix3x3(
|
|
m_el[0][0] * m[0][0] + m_el[1][0] * m[1][0] + m_el[2][0] * m[2][0],
|
|
m_el[0][0] * m[0][1] + m_el[1][0] * m[1][1] + m_el[2][0] * m[2][1],
|
|
m_el[0][0] * m[0][2] + m_el[1][0] * m[1][2] + m_el[2][0] * m[2][2],
|
|
m_el[0][1] * m[0][0] + m_el[1][1] * m[1][0] + m_el[2][1] * m[2][0],
|
|
m_el[0][1] * m[0][1] + m_el[1][1] * m[1][1] + m_el[2][1] * m[2][1],
|
|
m_el[0][1] * m[0][2] + m_el[1][1] * m[1][2] + m_el[2][1] * m[2][2],
|
|
m_el[0][2] * m[0][0] + m_el[1][2] * m[1][0] + m_el[2][2] * m[2][0],
|
|
m_el[0][2] * m[0][1] + m_el[1][2] * m[1][1] + m_el[2][2] * m[2][1],
|
|
m_el[0][2] * m[0][2] + m_el[1][2] * m[1][2] + m_el[2][2] * m[2][2]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
|
|
{
|
|
return btMatrix3x3(
|
|
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
|
|
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
|
|
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
|
|
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btMatrix3x3& m, const btVector3& v)
|
|
{
|
|
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btVector3& v, const btMatrix3x3& m)
|
|
{
|
|
return btVector3(m.tdot(0, v), m.tdot(1, v), m.tdot(2, v));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3
|
|
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
|
|
{
|
|
return btMatrix3x3(
|
|
m2.tdot(0, m1[0]), m2.tdot(1, m1[0]), m2.tdot(2, m1[0]),
|
|
m2.tdot(0, m1[1]), m2.tdot(1, m1[1]), m2.tdot(2, m1[1]),
|
|
m2.tdot(0, m1[2]), m2.tdot(1, m1[2]), m2.tdot(2, m1[2]));
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
|
|
return btMatrix3x3(
|
|
m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
|
|
m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
|
|
m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
|
|
m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
|
|
m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
|
|
m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
|
|
m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
|
|
m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
|
|
m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
|
|
}
|
|
|
|
|
|
#endif
|