Files
bullet3/Demos3/bullet2/BasicDemo/BasicDemo.cpp
erwin coumans d485f2b272 btMultiBodyConstraintSolver writes back the applied impulse for contact points
(added some debugging output for this in the demos, commented-out by default)
2014-02-24 16:55:54 -08:00

174 lines
4.8 KiB
C++

#include "BasicDemo.h"
#include "OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btVector3.h"
#include "BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h"
#define ARRAY_SIZE_X 5
#define ARRAY_SIZE_Y 5
#define ARRAY_SIZE_Z 5
static const float scaling=0.35f;
BasicDemo::BasicDemo(SimpleOpenGL3App* app)
:Bullet2RigidBodyDemo(app)
{
}
BasicDemo::~BasicDemo()
{
}
void BasicDemo::createGround(int cubeShapeId)
{
{
float color[]={0.3,0.3,1,1};
float halfExtents[]={50,50,50,1};
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
m_glApp->m_instancingRenderer->registerGraphicsInstance(cubeShapeId,groundTransform.getOrigin(),groundTransform.getRotation(),color,halfExtents);
btBoxShape* groundShape = new btBoxShape(btVector3(btScalar(halfExtents[0]),btScalar(halfExtents[1]),btScalar(halfExtents[2])));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
}
}
void BasicDemo::initPhysics()
{
// Bullet2RigidBodyDemo::initPhysics();
m_config = new btDefaultCollisionConfiguration;
m_dispatcher = new btCollisionDispatcher(m_config);
m_bp = new btDbvtBroadphase();
m_solver = new btNNCGConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_bp,m_solver,m_config);
int curColor=0;
//create ground
int cubeShapeId = m_glApp->registerCubeShape();
float pos[]={0,0,0};
float orn[]={0,0,0,1};
createGround(cubeShapeId);
{
float halfExtents[]={scaling,scaling,scaling,1};
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
btTransform startTransform;
startTransform.setIdentity();
btScalar mass = 1.f;
btVector3 localInertia;
btBoxShape* colShape = new btBoxShape(btVector3(halfExtents[0],halfExtents[1],halfExtents[2]));
colShape ->calculateLocalInertia(mass,localInertia);
for (int k=0;k<ARRAY_SIZE_Y;k++)
{
for (int i=0;i<ARRAY_SIZE_X;i++)
{
for(int j = 0;j<ARRAY_SIZE_Z;j++)
{
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
startTransform.setOrigin(btVector3(
btScalar(2.0*scaling*i),
btScalar(2.*scaling+2.0*scaling*k),
btScalar(2.0*scaling*j)));
m_glApp->m_instancingRenderer->registerGraphicsInstance(cubeShapeId,startTransform.getOrigin(),startTransform.getRotation(),color,halfExtents);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);
}
}
}
}
m_glApp->m_instancingRenderer->writeTransforms();
}
void BasicDemo::exitPhysics()
{
Bullet2RigidBodyDemo::exitPhysics();
}
void BasicDemo::renderScene()
{
//sync graphics -> physics world transforms
{
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btVector3 pos = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getOrigin();
btQuaternion orn = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getRotation();
m_glApp->m_instancingRenderer->writeSingleInstanceTransformToCPU(pos,orn,i);
}
m_glApp->m_instancingRenderer->writeTransforms();
}
m_glApp->m_instancingRenderer->renderScene();
}
void BasicDemo::stepSimulation(float dt)
{
m_dynamicsWorld->stepSimulation(dt);
/*
//print applied force
//contact points
for (int i=0;i<m_dynamicsWorld->getDispatcher()->getNumManifolds();i++)
{
btPersistentManifold* contact = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
for (int c=0;c<contact->getNumContacts();c++)
{
btManifoldPoint& pt = contact->getContactPoint(c);
btScalar dist = pt.getDistance();
if (dist< contact->getContactProcessingThreshold())
{
printf("normalImpulse[%d.%d] = %f\n",i,c,pt.m_appliedImpulse);
} else
{
printf("?\n");
}
}
}
*/
}