Files
bullet3/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp
erwin.coumans d58081ce37 Provide easier access to CFM and ERP (and Stop ERP/Stop CFM) for constraints in a similar way to Open Dynamics Engine
virtual	void	btTypedConstraint::setParam(int num, btScalar value, int axis = -1) = 0;
virtual	btScalar btTypedConstraint::getParam(int num, int axis = -1) const = 0;
	
Parameter can be BT_CONSTRAINT_ERP,BT_CONSTRAINT_STOP_ERP,BT_CONSTRAINT_CFM,BT_CONSTRAINT_STOP_CFM
Axis is 0 .. 5, first 3 for linear degrees of freedom, last 3 for angular. If no axis is specified it will take the 'default' degree of freedom. For a btHingeConstraint this would be the hinge axis (5)
2010-02-03 22:16:09 +00:00

310 lines
8.4 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btPoint2PointConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include <new>
btPoint2PointConstraint::btPoint2PointConstraint()
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
}
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB)
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
}
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA)
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
m_flags(0),
m_useSolveConstraintObsolete(false)
{
}
void btPoint2PointConstraint::buildJacobian()
{
///we need it for both methods
{
m_appliedImpulse = btScalar(0.);
btVector3 normal(0,0,0);
for (int i=0;i<3;i++)
{
normal[i] = 1;
new (&m_jac[i]) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
normal,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
normal[i] = 0;
}
}
}
void btPoint2PointConstraint::getInfo1 (btConstraintInfo1* info)
{
getInfo1NonVirtual(info);
}
void btPoint2PointConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
} else
{
info->m_numConstraintRows = 3;
info->nub = 3;
}
}
void btPoint2PointConstraint::getInfo2 (btConstraintInfo2* info)
{
getInfo2NonVirtual(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
}
void btPoint2PointConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& body0_trans, const btTransform& body1_trans)
{
btAssert(!m_useSolveConstraintObsolete);
//retrieve matrices
// anchor points in global coordinates with respect to body PORs.
// set jacobian
info->m_J1linearAxis[0] = 1;
info->m_J1linearAxis[info->rowskip+1] = 1;
info->m_J1linearAxis[2*info->rowskip+2] = 1;
btVector3 a1 = body0_trans.getBasis()*getPivotInA();
{
btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
btVector3 a1neg = -a1;
a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
/*info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[s+1] = -1;
info->m_J2linearAxis[2*s+2] = -1;
*/
btVector3 a2 = body1_trans.getBasis()*getPivotInB();
{
btVector3 a2n = -a2;
btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
// set right hand side
btScalar currERP = (m_flags & BT_P2P_FLAGS_ERP) ? m_erp : info->erp;
btScalar k = info->fps * currERP;
int j;
for (j=0; j<3; j++)
{
info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
//printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
}
if(m_flags & BT_P2P_FLAGS_CFM)
{
for (j=0; j<3; j++)
{
info->cfm[j*info->rowskip] = m_cfm;
}
}
btScalar impulseClamp = m_setting.m_impulseClamp;//
for (j=0; j<3; j++)
{
if (m_setting.m_impulseClamp > 0)
{
info->m_lowerLimit[j*info->rowskip] = -impulseClamp;
info->m_upperLimit[j*info->rowskip] = impulseClamp;
}
}
}
void btPoint2PointConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
{
if (m_useSolveConstraintObsolete)
{
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
btVector3 normal(0,0,0);
// btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
// btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
for (int i=0;i<3;i++)
{
normal[i] = 1;
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
//this jacobian entry could be re-used for all iterations
btVector3 vel1,vel2;
bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
btVector3 vel = vel1 - vel2;
btScalar rel_vel;
rel_vel = normal.dot(vel);
/*
//velocity error (first order error)
btScalar rel_vel = m_jac[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
*/
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar deltaImpulse = depth*m_setting.m_tau/timeStep * jacDiagABInv - m_setting.m_damping * rel_vel * jacDiagABInv;
btScalar impulseClamp = m_setting.m_impulseClamp;
const btScalar sum = btScalar(m_appliedImpulse) + deltaImpulse;
if (sum < -impulseClamp)
{
deltaImpulse = -impulseClamp-m_appliedImpulse;
m_appliedImpulse = -impulseClamp;
}
else if (sum > impulseClamp)
{
deltaImpulse = impulseClamp-m_appliedImpulse;
m_appliedImpulse = impulseClamp;
}
else
{
m_appliedImpulse = sum;
}
btVector3 impulse_vector = normal * deltaImpulse;
btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,deltaImpulse);
bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-deltaImpulse);
normal[i] = 0;
}
}
}
void btPoint2PointConstraint::updateRHS(btScalar timeStep)
{
(void)timeStep;
}
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
void btPoint2PointConstraint::setParam(int num, btScalar value, int axis)
{
if(axis != -1)
{
btAssertConstrParams(0);
}
else
{
switch(num)
{
case BT_CONSTRAINT_ERP :
case BT_CONSTRAINT_STOP_ERP :
m_erp = value;
m_flags |= BT_P2P_FLAGS_ERP;
break;
case BT_CONSTRAINT_CFM :
case BT_CONSTRAINT_STOP_CFM :
m_cfm = value;
m_flags |= BT_P2P_FLAGS_CFM;
break;
default:
btAssertConstrParams(0);
}
}
}
///return the local value of parameter
btScalar btPoint2PointConstraint::getParam(int num, int axis) const
{
btScalar retVal;
if(axis != -1)
{
btAssertConstrParams(0);
}
else
{
switch(num)
{
case BT_CONSTRAINT_ERP :
case BT_CONSTRAINT_STOP_ERP :
btAssertConstrParams(m_flags & BT_P2P_FLAGS_ERP);
retVal = m_erp;
break;
case BT_CONSTRAINT_CFM :
case BT_CONSTRAINT_STOP_CFM :
btAssertConstrParams(m_flags & BT_P2P_FLAGS_CFM);
retVal = m_cfm;
break;
default:
btAssertConstrParams(0);
}
}
return retVal;
}