virtual void btTypedConstraint::setParam(int num, btScalar value, int axis = -1) = 0; virtual btScalar btTypedConstraint::getParam(int num, int axis = -1) const = 0; Parameter can be BT_CONSTRAINT_ERP,BT_CONSTRAINT_STOP_ERP,BT_CONSTRAINT_CFM,BT_CONSTRAINT_STOP_CFM Axis is 0 .. 5, first 3 for linear degrees of freedom, last 3 for angular. If no axis is specified it will take the 'default' degree of freedom. For a btHingeConstraint this would be the hinge axis (5)
310 lines
8.4 KiB
C++
310 lines
8.4 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "btPoint2PointConstraint.h"
|
|
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
|
#include <new>
|
|
|
|
|
|
|
|
btPoint2PointConstraint::btPoint2PointConstraint()
|
|
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE),
|
|
m_flags(0),
|
|
m_useSolveConstraintObsolete(false)
|
|
{
|
|
}
|
|
|
|
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB)
|
|
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
|
|
m_flags(0),
|
|
m_useSolveConstraintObsolete(false)
|
|
{
|
|
|
|
}
|
|
|
|
|
|
btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA)
|
|
:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
|
|
m_flags(0),
|
|
m_useSolveConstraintObsolete(false)
|
|
{
|
|
|
|
}
|
|
|
|
void btPoint2PointConstraint::buildJacobian()
|
|
{
|
|
|
|
///we need it for both methods
|
|
{
|
|
m_appliedImpulse = btScalar(0.);
|
|
|
|
btVector3 normal(0,0,0);
|
|
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
normal[i] = 1;
|
|
new (&m_jac[i]) btJacobianEntry(
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
|
|
m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
|
|
normal,
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
m_rbA.getInvMass(),
|
|
m_rbB.getInvInertiaDiagLocal(),
|
|
m_rbB.getInvMass());
|
|
normal[i] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
void btPoint2PointConstraint::getInfo1 (btConstraintInfo1* info)
|
|
{
|
|
getInfo1NonVirtual(info);
|
|
}
|
|
|
|
void btPoint2PointConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
|
|
{
|
|
if (m_useSolveConstraintObsolete)
|
|
{
|
|
info->m_numConstraintRows = 0;
|
|
info->nub = 0;
|
|
} else
|
|
{
|
|
info->m_numConstraintRows = 3;
|
|
info->nub = 3;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void btPoint2PointConstraint::getInfo2 (btConstraintInfo2* info)
|
|
{
|
|
getInfo2NonVirtual(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
|
|
}
|
|
|
|
void btPoint2PointConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& body0_trans, const btTransform& body1_trans)
|
|
{
|
|
btAssert(!m_useSolveConstraintObsolete);
|
|
|
|
//retrieve matrices
|
|
|
|
// anchor points in global coordinates with respect to body PORs.
|
|
|
|
// set jacobian
|
|
info->m_J1linearAxis[0] = 1;
|
|
info->m_J1linearAxis[info->rowskip+1] = 1;
|
|
info->m_J1linearAxis[2*info->rowskip+2] = 1;
|
|
|
|
btVector3 a1 = body0_trans.getBasis()*getPivotInA();
|
|
{
|
|
btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
|
|
btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
|
|
btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
|
|
btVector3 a1neg = -a1;
|
|
a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
|
|
}
|
|
|
|
/*info->m_J2linearAxis[0] = -1;
|
|
info->m_J2linearAxis[s+1] = -1;
|
|
info->m_J2linearAxis[2*s+2] = -1;
|
|
*/
|
|
|
|
btVector3 a2 = body1_trans.getBasis()*getPivotInB();
|
|
|
|
{
|
|
btVector3 a2n = -a2;
|
|
btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
|
|
btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
|
|
btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
|
|
a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
|
|
}
|
|
|
|
|
|
|
|
// set right hand side
|
|
btScalar currERP = (m_flags & BT_P2P_FLAGS_ERP) ? m_erp : info->erp;
|
|
btScalar k = info->fps * currERP;
|
|
int j;
|
|
for (j=0; j<3; j++)
|
|
{
|
|
info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
|
|
//printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
|
|
}
|
|
if(m_flags & BT_P2P_FLAGS_CFM)
|
|
{
|
|
for (j=0; j<3; j++)
|
|
{
|
|
info->cfm[j*info->rowskip] = m_cfm;
|
|
}
|
|
}
|
|
|
|
btScalar impulseClamp = m_setting.m_impulseClamp;//
|
|
for (j=0; j<3; j++)
|
|
{
|
|
if (m_setting.m_impulseClamp > 0)
|
|
{
|
|
info->m_lowerLimit[j*info->rowskip] = -impulseClamp;
|
|
info->m_upperLimit[j*info->rowskip] = impulseClamp;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void btPoint2PointConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
|
|
{
|
|
|
|
if (m_useSolveConstraintObsolete)
|
|
{
|
|
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
|
|
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
|
|
|
|
|
|
btVector3 normal(0,0,0);
|
|
|
|
|
|
// btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
|
|
// btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
|
|
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
normal[i] = 1;
|
|
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
|
|
|
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
|
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
|
//this jacobian entry could be re-used for all iterations
|
|
|
|
btVector3 vel1,vel2;
|
|
bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
|
|
bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
|
|
btVector3 vel = vel1 - vel2;
|
|
|
|
btScalar rel_vel;
|
|
rel_vel = normal.dot(vel);
|
|
|
|
/*
|
|
//velocity error (first order error)
|
|
btScalar rel_vel = m_jac[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
|
m_rbB.getLinearVelocity(),angvelB);
|
|
*/
|
|
|
|
//positional error (zeroth order error)
|
|
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
|
|
|
btScalar deltaImpulse = depth*m_setting.m_tau/timeStep * jacDiagABInv - m_setting.m_damping * rel_vel * jacDiagABInv;
|
|
|
|
btScalar impulseClamp = m_setting.m_impulseClamp;
|
|
|
|
const btScalar sum = btScalar(m_appliedImpulse) + deltaImpulse;
|
|
if (sum < -impulseClamp)
|
|
{
|
|
deltaImpulse = -impulseClamp-m_appliedImpulse;
|
|
m_appliedImpulse = -impulseClamp;
|
|
}
|
|
else if (sum > impulseClamp)
|
|
{
|
|
deltaImpulse = impulseClamp-m_appliedImpulse;
|
|
m_appliedImpulse = impulseClamp;
|
|
}
|
|
else
|
|
{
|
|
m_appliedImpulse = sum;
|
|
}
|
|
|
|
|
|
btVector3 impulse_vector = normal * deltaImpulse;
|
|
|
|
btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
|
|
btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
|
|
bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,deltaImpulse);
|
|
bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-deltaImpulse);
|
|
|
|
|
|
normal[i] = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void btPoint2PointConstraint::updateRHS(btScalar timeStep)
|
|
{
|
|
(void)timeStep;
|
|
|
|
}
|
|
|
|
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
|
|
///If no axis is provided, it uses the default axis for this constraint.
|
|
void btPoint2PointConstraint::setParam(int num, btScalar value, int axis)
|
|
{
|
|
if(axis != -1)
|
|
{
|
|
btAssertConstrParams(0);
|
|
}
|
|
else
|
|
{
|
|
switch(num)
|
|
{
|
|
case BT_CONSTRAINT_ERP :
|
|
case BT_CONSTRAINT_STOP_ERP :
|
|
m_erp = value;
|
|
m_flags |= BT_P2P_FLAGS_ERP;
|
|
break;
|
|
case BT_CONSTRAINT_CFM :
|
|
case BT_CONSTRAINT_STOP_CFM :
|
|
m_cfm = value;
|
|
m_flags |= BT_P2P_FLAGS_CFM;
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
///return the local value of parameter
|
|
btScalar btPoint2PointConstraint::getParam(int num, int axis) const
|
|
{
|
|
btScalar retVal;
|
|
if(axis != -1)
|
|
{
|
|
btAssertConstrParams(0);
|
|
}
|
|
else
|
|
{
|
|
switch(num)
|
|
{
|
|
case BT_CONSTRAINT_ERP :
|
|
case BT_CONSTRAINT_STOP_ERP :
|
|
btAssertConstrParams(m_flags & BT_P2P_FLAGS_ERP);
|
|
retVal = m_erp;
|
|
break;
|
|
case BT_CONSTRAINT_CFM :
|
|
case BT_CONSTRAINT_STOP_CFM :
|
|
btAssertConstrParams(m_flags & BT_P2P_FLAGS_CFM);
|
|
retVal = m_cfm;
|
|
break;
|
|
default:
|
|
btAssertConstrParams(0);
|
|
}
|
|
}
|
|
return retVal;
|
|
}
|
|
|