example: python -m pybullet_envs.agents.train_ppo --config=pybullet_pendulum --logdir=pendulum
43 lines
1.2 KiB
Python
43 lines
1.2 KiB
Python
|
|
r"""Script to visualize the trained PPO agent.
|
|
|
|
python -m pybullet_envs.agents.visualize \
|
|
--logdir=ppo
|
|
--outdir=/tmp/video/
|
|
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow as tf
|
|
|
|
from agents.scripts import visualize
|
|
|
|
|
|
flags = tf.app.flags
|
|
FLAGS = tf.app.flags.FLAGS
|
|
flags.DEFINE_string("logdir", None,
|
|
"Directory to the checkpoint of a training run.")
|
|
flags.DEFINE_string("outdir", None,
|
|
"Local directory for storing the monitoring outdir.")
|
|
flags.DEFINE_string("checkpoint", None,
|
|
"Checkpoint name to load; defaults to most recent.")
|
|
flags.DEFINE_integer("num_agents", 1,
|
|
"How many environments to step in parallel.")
|
|
flags.DEFINE_integer("num_episodes", 1, "Minimum number of episodes to render.")
|
|
flags.DEFINE_boolean(
|
|
"env_processes", False,
|
|
"Step environments in separate processes to circumvent the GIL.")
|
|
|
|
|
|
def main(_):
|
|
visualize.visualize(FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents,
|
|
FLAGS.num_episodes, FLAGS.checkpoint, FLAGS.env_processes)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tf.app.run()
|
|
|