correct blur and learning rate

This commit is contained in:
Bart Moyaers
2019-11-29 09:35:33 +01:00
parent 7b42ffef8a
commit d2098810df

View File

@@ -9,7 +9,9 @@ from cv2util import to_8_bit_image
from string import digits as DIGITS
class BackgroundHeatmap:
def __init__(self, first_frame):
def __init__(self, first_frame, append_blur=True, learning_rate=0.0003):
self.append_blur = append_blur
self.learning_rate = learning_rate
self.heatmap = np.array([])
self.backsub = cv2.createBackgroundSubtractorMOG2()
# self.backsub = cv2.createBackgroundSubtractorKNN()
@@ -20,7 +22,9 @@ class BackgroundHeatmap:
# ret, frame = self.cap.read()
# # self.backsub.apply(cv2.blur(frame,(5,5)))
# self.backsub.apply(frame)
self.lastframe = self.backsub.apply(cv2.blur(first_frame,(5,5))) # don't forget blur here if re applying blur
if self.append_blur:
frame = cv2.blur(first_frame,(5,5))
self.lastframe = self.backsub.apply(frame, self.learning_rate)
self.lastsum = self.to_floats(self.lastframe)
@staticmethod
@@ -40,7 +44,9 @@ class BackgroundHeatmap:
return cv2.applyColorMap(frame, cv2.COLORMAP_JET)
def update(self, frame):
self.lastframe = self.backsub.apply(cv2.blur(frame,(5,5)))
if self.append_blur:
frame = cv2.blur(frame,(5,5))
self.backsub.apply(frame, self.lastframe, self.learning_rate)
self.lastsum += self.to_floats(self.lastframe)
self.heatmap = self.gray_to_heat(
self.float_to_gray(