Added a Lemke MLCP solver, extracted from the MBSim project, and re-licensed under the zlib license

with permission of the original author. 
The Lemke implementation is not fully working yet:
1) we need to convert the lo-high LCP problem into a problem without the lo/high
2) we need to sort out the remaining instabilities, and report a failure if the max loopcount is reached etc.
We replaced the fmatvec library with our own LinearMath/btMatrixX.h, and STL std::vector with btAlignedObjectArray

Removed some warnings/potential issues: use fuzzyZero instead of isZero, and some warnings, 
related to this issue 756
This commit is contained in:
erwin.coumans
2013-10-26 18:45:25 +00:00
parent 19f999ac08
commit 1a2c3c0ee9
6 changed files with 843 additions and 81 deletions

View File

@@ -812,7 +812,7 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
///avoid collision response between two static objects
if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
if (!solverBodyA || (solverBodyA->m_invMass.fuzzyZero() && (!solverBodyB || solverBodyB->m_invMass.fuzzyZero())))
return;
int rollingFriction=1;

View File

@@ -0,0 +1,368 @@
/* Copyright (C) 2004-2013 MBSim Development Team
Code was converted for the Bullet Continuous Collision Detection and Physics Library
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//The original version is here
//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
//This file is re-distributed under the ZLib license, with permission of the original author
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
//STL/std::vector replaced by btAlignedObjectArray
#include "btLemkeAlgorithm.h"
btScalar btMachEps()
{
static bool calculated=false;
static btScalar machEps = btScalar(1.);
if (!calculated)
{
do {
machEps /= btScalar(2.0);
// If next epsilon yields 1, then break, because current
// epsilon is the machine epsilon.
}
while ((btScalar)(1.0 + (machEps/btScalar(2.0))) != btScalar(1.0));
// printf( "\nCalculated Machine epsilon: %G\n", machEps );
calculated=true;
}
return machEps;
}
btScalar btEpsRoot() {
static btScalar epsroot = 0.;
static bool alreadyCalculated = false;
if (!alreadyCalculated) {
epsroot = btSqrt(btMachEps());
alreadyCalculated = true;
}
return epsroot;
}
btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
{
steps = 0;
int dim = m_q.size();
#ifdef BT_DEBUG_OSTREAM
if(DEBUGLEVEL >= 1) {
cout << "Dimension = " << dim << endl;
}
#endif //BT_DEBUG_OSTREAM
btVectorXu solutionVector(2 * dim);
solutionVector.setZero();
//, INIT, 0.);
btMatrixXu ident(dim, dim);
ident.setIdentity();
#ifdef BT_DEBUG_OSTREAM
cout << m_M << std::endl;
#endif
btMatrixXu mNeg = m_M.negative();
btMatrixXu A(dim, 2 * dim + 2);
//
A.setSubMatrix(0, 0, dim - 1, dim - 1,ident);
A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1,mNeg);
A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1,m_q);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //BT_DEBUG_OSTREAM
// btVectorXu q_;
// q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
btAlignedObjectArray<int> basis;
//At first, all w-values are in the basis
for (int i = 0; i < dim; i++)
basis.push_back(i);
int pivotRowIndex = -1;
btScalar minValue = 1e30f;
bool greaterZero = true;
for (int i=0;i<dim;i++)
{
btScalar v =A(i,2*dim+1);
if (v<minValue)
{
minValue=v;
pivotRowIndex = i;
}
if (v<0)
greaterZero = false;
}
// int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
int pivotColIndex = 2 * dim; // first col is that of z0
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 3)
{
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
cout << "Basis: ";
for (int i = 0; i < basis.size(); i++)
cout << basis[i] << " ";
cout << endl;
}
#endif //BT_DEBUG_OSTREAM
if (!greaterZero)
{
if (maxloops == 0) {
maxloops = 100;
// maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
}
/*start looping*/
for(steps = 0; steps < maxloops; steps++) {
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 3) {
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
cout << "Basis: ";
for (int i = 0; i < basis.size(); i++)
cout << basis[i] << " ";
cout << endl;
}
#endif //BT_DEBUG_OSTREAM
int pivotColIndexOld = pivotColIndex;
/*find new column index */
if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
pivotColIndex = basis[pivotRowIndex] + dim;
else
//else do it the other way round and get in the corresponding w-value
pivotColIndex = basis[pivotRowIndex] - dim;
/*the column becomes part of the basis*/
basis[pivotRowIndex] = pivotColIndexOld;
pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
if(z0Row == pivotRowIndex) { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
basis[pivotRowIndex] = pivotColIndex; //update basis
break;
}
}
#ifdef BT_DEBUG_OSTREAM
if(DEBUGLEVEL >= 1) {
cout << "Number of loops: " << steps << endl;
cout << "Number of maximal loops: " << maxloops << endl;
}
#endif //BT_DEBUG_OSTREAM
if(!validBasis(basis)) {
info = -1;
#ifdef BT_DEBUG_OSTREAM
if(DEBUGLEVEL >= 1)
cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
#endif //BT_DEBUG_OSTREAM
return solutionVector;
}
}
#ifdef BT_DEBUG_OSTREAM
if (DEBUGLEVEL >= 2) {
// cout << "A: " << A << endl;
cout << "pivotRowIndex " << pivotRowIndex << endl;
cout << "pivotColIndex " << pivotColIndex << endl;
}
#endif //BT_DEBUG_OSTREAM
for (int i = 0; i < basis.size(); i++)
{
solutionVector[basis[i]] = A(i,2*dim+1);//q_[i];
}
info = 0;
return solutionVector;
}
int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int & pivotColIndex) {
int RowIndex = 0;
int dim = A.rows();
btAlignedObjectArray<btVectorXu> Rows;
for (int row = 0; row < dim; row++)
{
btVectorXu vec(dim + 1);
vec.setZero();//, INIT, 0.)
Rows.push_back(vec);
btScalar a = A(row, pivotColIndex);
if (a > 0) {
Rows[row][0] = A(row, 2 * dim + 1) / a;
Rows[row][1] = A(row, 2 * dim) / a;
for (int j = 2; j < dim + 1; j++)
Rows[row][j] = A(row, j - 1) / a;
#ifdef BT_DEBUG_OSTREAM
// if (DEBUGLEVEL) {
// cout << "Rows(" << row << ") = " << Rows[row] << endl;
// }
#endif
}
}
for (int i = 0; i < Rows.size(); i++)
{
if (Rows[i].nrm2() > 0.) {
int j = 0;
for (; j < Rows.size(); j++)
{
if(i != j)
{
if(Rows[j].nrm2() > 0.)
{
btVectorXu test(dim + 1);
for (int ii=0;ii<dim+1;ii++)
{
test[ii] = Rows[j][ii] - Rows[i][ii];
}
//=Rows[j] - Rows[i]
if (! LexicographicPositive(test))
break;
}
}
}
if (j == Rows.size())
{
RowIndex += i;
break;
}
}
}
return RowIndex;
}
bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu & v)
{
int i = 0;
// if (DEBUGLEVEL)
// cout << "v " << v << endl;
while(i < v.size()-1 && fabs(v[i]) < btMachEps())
i++;
if (v[i] > 0)
return true;
return false;
}
void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
{
btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif
for (int i = 0; i < A.rows(); i++)
{
if (i != pivotRowIndex)
{
for (int j = 0; j < A.cols(); j++)
{
if (j != pivotColumnIndex)
{
btScalar v = A(i, j);
v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
A.setElem(i, j, v);
}
}
}
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //BT_DEBUG_OSTREAM
for (int i = 0; i < A.cols(); i++)
{
A.mulElem(pivotRowIndex, i,-a);
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //#ifdef BT_DEBUG_OSTREAM
for (int i = 0; i < A.rows(); i++)
{
if (i != pivotRowIndex)
{
A.setElem(i, pivotColumnIndex,0);
}
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif //#ifdef BT_DEBUG_OSTREAM
}
bool btLemkeAlgorithm::greaterZero(const btVectorXu & vector)
{
bool isGreater = true;
for (int i = 0; i < vector.size(); i++) {
if (vector[i] < 0) {
isGreater = false;
break;
}
}
return isGreater;
}
bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
{
bool isValid = true;
for (int i = 0; i < basis.size(); i++) {
if (basis[i] >= basis.size() * 2) { //then z0 is in the base
isValid = false;
break;
}
}
return isValid;
}

View File

@@ -0,0 +1,108 @@
/* Copyright (C) 2004-2013 MBSim Development Team
Code was converted for the Bullet Continuous Collision Detection and Physics Library
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
//The original version is here
//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
//This file is re-distributed under the ZLib license, with permission of the original author
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
//STL/std::vector replaced by btAlignedObjectArray
#ifndef NUMERICS_LEMKE_ALGORITHM_H_
#define NUMERICS_LEMKE_ALGORITHM_H_
#include "LinearMath/btMatrixX.h"
#include <vector> //todo: replace by btAlignedObjectArray
class btLemkeAlgorithm
{
public:
btLemkeAlgorithm(const btMatrixXu& M_, const btVectorXu& q_, const int & DEBUGLEVEL_ = 0) :
DEBUGLEVEL(DEBUGLEVEL_)
{
setSystem(M_, q_);
}
/* GETTER / SETTER */
/**
* \brief return info of solution process
*/
int getInfo() {
return info;
}
/**
* \brief get the number of steps until the solution was found
*/
int getSteps(void) {
return steps;
}
/**
* \brief set system with Matrix M and vector q
*/
void setSystem(const btMatrixXu & M_, const btVectorXu & q_)
{
m_M = M_;
m_q = q_;
}
/***************************************************/
/**
* \brief solve algorithm adapted from : Fast Implementation of Lemkes Algorithm for Rigid Body Contact Simulation (John E. Lloyd)
*/
btVectorXu solve(unsigned int maxloops = 0);
virtual ~btLemkeAlgorithm() {
}
protected:
int findLexicographicMinimum(const btMatrixXu &A, const int & pivotColIndex);
bool LexicographicPositive(const btVectorXu & v);
void GaussJordanEliminationStep(btMatrixXu &A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis);
bool greaterZero(const btVectorXu & vector);
bool validBasis(const btAlignedObjectArray<int>& basis);
btMatrixXu m_M;
btVectorXu m_q;
/**
* \brief number of steps until the Lemke algorithm found a solution
*/
unsigned int steps;
/**
* \brief define level of debug output
*/
int DEBUGLEVEL;
/**
* \brief did the algorithm find a solution
*
* -1 : not successful
* 0 : successful
*/
int info;
};
#endif /* NUMERICS_LEMKE_ALGORITHM_H_ */

View File

@@ -0,0 +1,127 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///original version written by Erwin Coumans, October 2013
#ifndef BT_LEMKE_SOLVER_H
#define BT_LEMKE_SOLVER_H
#include "btMLCPSolverInterface.h"
#include "btLemkeAlgorithm.h"
class btLemkeSolver : public btMLCPSolverInterface
{
public:
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
int dimension = A.rows();
if (0==dimension)
return true;
// printf("================ solving using Lemke/Newton/Fixpoint\n");
btVectorXu q;
q.resize(dimension);
for (int row=0;row<dimension;row++)
{
q[row] = -b[row];
}
int debugLevel=0;
btLemkeAlgorithm lemke(A,q,debugLevel);
lemke.setSystem(A,q);
int maxloops = 10000;
btVectorXu solution = lemke.solve(maxloops);
//check solution
bool fail = false;
int errorIndexMax = -1;
int errorIndexMin = -1;
float errorValueMax = -1e30;
float errorValueMin = 1e30;
for (int i=0;i<dimension;i++)
{
x[i] = solution[i+dimension];
volatile btScalar check = x[i];
if (x[i] != check)
{
x.setZero();
return false;
}
//this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
//we need to figure out why it happens, and fix it, or detect it properly)
if (x[i]>100000)
{
if (x[i]> errorValueMax)
{
fail = true;
errorIndexMax = i;
errorValueMax = x[i];
}
////printf("x[i] = %f,",x[i]);
}
if (x[i]<-10000)
{
if (x[i]<errorValueMin)
{
errorIndexMin = i;
errorValueMin = x[i];
fail = true;
//printf("x[i] = %f,",x[i]);
}
}
}
if (fail)
{
static int errorCountTimes = 0;
if (errorIndexMin<0)
errorValueMin = 0.f;
if (errorIndexMax<0)
errorValueMax = 0.f;
printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
for (int i=0;i<dimension;i++)
{
x[i]=0.f;
}
}
#if 0
if (lemke.getInfo()<0)
{
printf("Lemke found no solution, info = %d\n",lemke.getInfo());
} else
{
printf("Lemke info = %d, found a solution in %d steps\n",lemke.getInfo(),lemke.getSteps());
//printf("Lemke found a solution\n");
for (int i=0;i<dimension;i++)
{
x[i] = solution(i+dimension);
}
}
#endif
return !fail;
}
};
#endif //BT_LEMKE_SOLVER_H

View File

@@ -20,6 +20,12 @@ subject to the following restrictions:
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btAlignedObjectArray.h"
//#define BT_DEBUG_OSTREAM
#ifdef BT_DEBUG_OSTREAM
#include <ostream>
#include <iomanip> // std::setw
#endif //BT_DEBUG_OSTREAM
class btIntSortPredicate
{
public:
@@ -30,6 +36,118 @@ class btIntSortPredicate
};
template <typename T>
struct btVectorX
{
btAlignedObjectArray<T> m_storage;
btVectorX()
{
}
btVectorX(int numRows)
{
m_storage.resize(numRows);
}
void resize(int rows)
{
m_storage.resize(rows);
}
int cols() const
{
return 1;
}
int rows() const
{
return m_storage.size();
}
int size() const
{
return rows();
}
T nrm2() const
{
T norm = T(0);
int nn = rows();
{
if (nn == 1)
{
norm = btFabs((*this)[0]);
}
else
{
T scale = 0.0;
T ssq = 1.0;
/* The following loop is equivalent to this call to the LAPACK
auxiliary routine: CALL SLASSQ( N, X, INCX, SCALE, SSQ ) */
for (int ix=0;ix<nn;ix++)
{
if ((*this)[ix] != 0.0)
{
T absxi = btFabs((*this)[ix]);
if (scale < absxi)
{
T temp;
temp = scale / absxi;
ssq = ssq * (temp * temp) + 1.0;
scale = absxi;
}
else
{
T temp;
temp = absxi / scale;
ssq += temp * temp;
}
}
}
norm = scale * sqrt(ssq);
}
}
return norm;
}
void setZero()
{
// for (int i=0;i<m_storage.size();i++)
// m_storage[i]=0;
//memset(&m_storage[0],0,sizeof(T)*m_storage.size());
btSetZero(&m_storage[0],m_storage.size());
}
const T& operator[] (int index) const
{
return m_storage[index];
}
T& operator[] (int index)
{
return m_storage[index];
}
T* getBufferPointerWritable()
{
return m_storage.size() ? &m_storage[0] : 0;
}
const T* getBufferPointer() const
{
return m_storage.size() ? &m_storage[0] : 0;
}
};
/*
template <typename T>
void setElem(btMatrixX<T>& mat, int row, int col, T val)
{
mat.setElem(row,col,val);
}
*/
template <typename T>
struct btMatrixX
{
@@ -109,21 +227,7 @@ struct btMatrixX
}
}
void copyLowerToUpperTriangle()
{
int count=0;
for (int row=0;row<m_rowNonZeroElements1.size();row++)
{
for (int j=0;j<m_rowNonZeroElements1[row].size();j++)
{
int col = m_rowNonZeroElements1[row][j];
setElem(col,row, (*this)(row,col));
count++;
}
}
//printf("copyLowerToUpperTriangle copied %d elements out of %dx%d=%d\n", count,rows(),cols(),cols()*rows());
}
void setElem(int row,int col, T val)
{
m_setElemOperations++;
@@ -134,9 +238,37 @@ struct btMatrixX
m_rowNonZeroElements1[row].push_back(col);
m_colNonZeroElements[col].push_back(row);
}
m_storage[row*m_cols+col] = val;
}
m_storage[row*m_cols+col] = val;
}
void mulElem(int row,int col, T val)
{
m_setElemOperations++;
//mul doesn't change sparsity info
m_storage[row*m_cols+col] *= val;
}
void copyLowerToUpperTriangle()
{
int count=0;
for (int row=0;row<m_rowNonZeroElements1.size();row++)
{
for (int j=0;j<m_rowNonZeroElements1[row].size();j++)
{
int col = m_rowNonZeroElements1[row][j];
setElem(col,row, (*this)(row,col));
count++;
}
}
//printf("copyLowerToUpperTriangle copied %d elements out of %dx%d=%d\n", count,rows(),cols(),cols()*rows());
}
const T& operator() (int row,int col) const
{
return m_storage[col+row*m_cols];
@@ -167,6 +299,19 @@ struct btMatrixX
clearSparseInfo();
}
}
void setIdentity()
{
btAssert(rows() == cols());
setZero();
for (int row=0;row<rows();row++)
{
setElem(row,row,1);
}
}
void printMatrix(const char* msg)
{
@@ -404,73 +549,62 @@ struct btMatrixX
bb += 8;
}
}
};
template <typename T>
struct btVectorX
{
btAlignedObjectArray<T> m_storage;
btVectorX()
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const T value)
{
int numRows = rowend+1-rowstart;
int numCols = colend+1-colstart;
for (int row=0;row<numRows;row++)
{
for (int col=0;col<numCols;col++)
{
setElem(rowstart+row,colstart+col,value);
}
}
}
btVectorX(int numRows)
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const btMatrixX& block)
{
m_storage.resize(numRows);
btAssert(rowend+1-rowstart == block.rows());
btAssert(colend+1-colstart == block.cols());
for (int row=0;row<block.rows();row++)
{
for (int col=0;col<block.cols();col++)
{
setElem(rowstart+row,colstart+col,block(row,col));
}
}
}
void resize(int rows)
void setSubMatrix(int rowstart,int colstart,int rowend,int colend,const btVectorX<T>& block)
{
m_storage.resize(rows);
btAssert(rowend+1-rowstart == block.rows());
btAssert(colend+1-colstart == block.cols());
for (int row=0;row<block.rows();row++)
{
for (int col=0;col<block.cols();col++)
{
setElem(rowstart+row,colstart+col,block[row]);
}
}
}
int cols() const
btMatrixX negative()
{
return 1;
}
int rows() const
{
return m_storage.size();
}
int size() const
{
return rows();
}
void setZero()
{
// for (int i=0;i<m_storage.size();i++)
// m_storage[i]=0;
//memset(&m_storage[0],0,sizeof(T)*m_storage.size());
btSetZero(&m_storage[0],m_storage.size());
}
const T& operator[] (int index) const
{
return m_storage[index];
}
T& operator[] (int index)
{
return m_storage[index];
}
T* getBufferPointerWritable()
{
return m_storage.size() ? &m_storage[0] : 0;
}
const T* getBufferPointer() const
{
return m_storage.size() ? &m_storage[0] : 0;
btMatrixX neg(rows(),cols());
for (int i=0;i<m_colNonZeroElements.size();i++)
for (int h=0;h<m_colNonZeroElements[i].size();h++)
{
int j = m_colNonZeroElements[i][h];
T v = (*this)(i,j);
neg.setElem(i,j,-v);
}
return neg;
}
};
/*
template <typename T>
void setElem(btMatrixX<T>& mat, int row, int col, T val)
{
mat.setElem(row,col,val);
}
*/
typedef btMatrixX<float> btMatrixXf;
@@ -480,6 +614,30 @@ typedef btMatrixX<double> btMatrixXd;
typedef btVectorX<double> btVectorXd;
#ifdef BT_DEBUG_OSTREAM
template <typename T>
std::ostream& operator<< (std::ostream& os, btMatrixX<T>& mat)
{
os << " [";
//printf("%s ---------------------\n",msg);
for (int i=0;i<mat.rows();i++)
{
for (int j=0;j<mat.cols();j++)
{
os << std::setw(10) << mat(i,j);
}
if (i!=mat.rows()-1)
os << std::endl << " ";
}
os << " ]";
//printf("\n---------------------\n");
return os;
}
#endif //BT_DEBUG_OSTREAM
inline void setElem(btMatrixXd& mat, int row, int col, double val)
{

View File

@@ -297,7 +297,7 @@ public:
SIMD_FORCE_INLINE btVector3& normalize()
{
btAssert(length() != btScalar(0));
btAssert(!fuzzyZero());
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
// dot product first
@@ -685,6 +685,7 @@ public:
return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
}
SIMD_FORCE_INLINE bool fuzzyZero() const
{
return length2() < SIMD_EPSILON;
@@ -950,9 +951,9 @@ SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
{
btVector3 norm = *this;
btVector3 nrm = *this;
return norm.normalize();
return nrm.normalize();
}
SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
@@ -1010,21 +1011,21 @@ SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long arra
if( array_count < scalar_cutoff )
#endif
{
btScalar maxDot = -SIMD_INFINITY;
btScalar maxDot1 = -SIMD_INFINITY;
int i = 0;
int ptIndex = -1;
for( i = 0; i < array_count; i++ )
{
btScalar dot = array[i].dot(*this);
if( dot > maxDot )
if( dot > maxDot1 )
{
maxDot = dot;
maxDot1 = dot;
ptIndex = i;
}
}
dotOut = maxDot;
dotOut = maxDot1;
return ptIndex;
}
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)