refactor pybullet/gym to allow instantiating environments directly from a pybullet install:

work-in-progress (need to add missing data files, fix paths etc)

example:

pip install pybullet
pip install gym

python
import gym
import pybullet
import pybullet_envs
env = gym.make("HumanoidBulletEnv-v0")
This commit is contained in:
Erwin Coumans
2017-08-22 00:42:02 -07:00
parent c06ea72a4c
commit 21f9d1b816
148 changed files with 115471 additions and 235 deletions

View File

@@ -0,0 +1,7 @@
from pybullet_envs.bullet.cartpole_bullet import CartPoleBulletEnv
from pybullet_envs.bullet.minitaur_bullet import MinitaurBulletEnv
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
from pybullet_envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from pybullet_envs.bullet.simpleHumanoidGymEnv import SimpleHumanoidGymEnv
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
from pybullet_envs.bullet.kukaCamGymEnv import KukaCamGymEnv

View File

@@ -0,0 +1,96 @@
"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c
"""
import os
import logging
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import subprocess
import pybullet as p
logger = logging.getLogger(__name__)
class CartPoleBulletEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self, renders=True):
# start the bullet physics server
self._renders = renders
if (renders):
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
observation_high = np.array([
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max,
np.finfo(np.float32).max])
action_high = np.array([0.1])
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.theta_threshold_radians = 1
self.x_threshold = 2.4
self._seed()
# self.reset()
self.viewer = None
self._configure()
def _configure(self, display=None):
self.display = display
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
p.stepSimulation()
# time.sleep(self.timeStep)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
theta, theta_dot, x, x_dot = self.state
dv = 0.1
deltav = [-10.*dv,-5.*dv, -2.*dv, -0.1*dv, 0, 0.1*dv, 2.*dv,5.*dv, 10.*dv][action]
p.setJointMotorControl2(self.cartpole, 0, p.VELOCITY_CONTROL, targetVelocity=(deltav + self.state[3]))
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
reward = 1.0
return np.array(self.state), reward, done, {}
def _reset(self):
# print("-----------reset simulation---------------")
p.resetSimulation()
self.cartpole = p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","cartpole.urdf"),[0,0,0])
self.timeStep = 0.01
p.setJointMotorControl2(self.cartpole, 1, p.VELOCITY_CONTROL, force=0)
p.setGravity(0,0, -10)
p.setTimeStep(self.timeStep)
p.setRealTimeSimulation(0)
initialCartPos = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
initialAngle = self.np_random.uniform(low=-0.5, high=0.5, size=(1,))
p.resetJointState(self.cartpole, 1, initialAngle)
p.resetJointState(self.cartpole, 0, initialCartPos)
self.state = p.getJointState(self.cartpole, 1)[0:2] + p.getJointState(self.cartpole, 0)[0:2]
return np.array(self.state)
def _render(self, mode='human', close=False):
return

View File

@@ -0,0 +1,162 @@
import os
import pybullet as p
import numpy as np
import copy
import math
class Kuka:
def __init__(self, urdfRootPath='', timeStep=0.01):
self.urdfRootPath = urdfRootPath
self.timeStep = timeStep
self.maxForce = 200.
self.fingerAForce = 6
self.fingerBForce = 5.5
self.fingerTipForce = 6
self.useInverseKinematics = 1
self.useSimulation = 1
self.useNullSpace = 1
self.useOrientation = 1
self.kukaEndEffectorIndex = 6
#lower limits for null space
self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05]
#upper limits for null space
self.ul=[.967,2 ,2.96,2.29,2.96,2.09,3.05]
#joint ranges for null space
self.jr=[5.8,4,5.8,4,5.8,4,6]
#restposes for null space
self.rp=[0,0,0,0.5*math.pi,0,-math.pi*0.5*0.66,0]
#joint damping coefficents
self.jd=[0.1,0.1,0.1,0.1,0.1,0.1,0.1]
self.reset()
def reset(self):
objects = p.loadSDF(os.path.join(os.path.dirname(__file__),"../data","kuka_iiwa/kuka_with_gripper2.sdf"))
self.kukaUid = objects[0]
#for i in range (p.getNumJoints(self.kukaUid)):
# print(p.getJointInfo(self.kukaUid,i))
p.resetBasePositionAndOrientation(self.kukaUid,[-0.100000,0.000000,0.070000],[0.000000,0.000000,0.000000,1.000000])
self.jointPositions=[ 0.006418, 0.413184, -0.011401, -1.589317, 0.005379, 1.137684, -0.006539, 0.000048, -0.299912, 0.000000, -0.000043, 0.299960, 0.000000, -0.000200 ]
self.numJoints = p.getNumJoints(self.kukaUid)
for jointIndex in range (self.numJoints):
p.resetJointState(self.kukaUid,jointIndex,self.jointPositions[jointIndex])
p.setJointMotorControl2(self.kukaUid,jointIndex,p.POSITION_CONTROL,targetPosition=self.jointPositions[jointIndex],force=self.maxForce)
self.trayUid = p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","tray/tray.urdf"), 0.640000,0.075000,-0.190000,0.000000,0.000000,1.000000,0.000000)
self.endEffectorPos = [0.537,0.0,0.5]
self.endEffectorAngle = 0
self.motorNames = []
self.motorIndices = []
for i in range (self.numJoints):
jointInfo = p.getJointInfo(self.kukaUid,i)
qIndex = jointInfo[3]
if qIndex > -1:
#print("motorname")
#print(jointInfo[1])
self.motorNames.append(str(jointInfo[1]))
self.motorIndices.append(i)
def getActionDimension(self):
if (self.useInverseKinematics):
return len(self.motorIndices)
return 6 #position x,y,z and roll/pitch/yaw euler angles of end effector
def getObservationDimension(self):
return len(self.getObservation())
def getObservation(self):
observation = []
state = p.getLinkState(self.kukaUid,self.kukaEndEffectorIndex)
pos = state[0]
orn = state[1]
euler = p.getEulerFromQuaternion(orn)
observation.extend(list(pos))
observation.extend(list(euler))
return observation
def applyAction(self, motorCommands):
#print ("self.numJoints")
#print (self.numJoints)
if (self.useInverseKinematics):
dx = motorCommands[0]
dy = motorCommands[1]
dz = motorCommands[2]
da = motorCommands[3]
fingerAngle = motorCommands[4]
state = p.getLinkState(self.kukaUid,self.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("pos[2] (getLinkState(kukaEndEffectorIndex)")
#print(actualEndEffectorPos[2])
self.endEffectorPos[0] = self.endEffectorPos[0]+dx
if (self.endEffectorPos[0]>0.75):
self.endEffectorPos[0]=0.75
if (self.endEffectorPos[0]<0.45):
self.endEffectorPos[0]=0.45
self.endEffectorPos[1] = self.endEffectorPos[1]+dy
if (self.endEffectorPos[1]<-0.22):
self.endEffectorPos[1]=-0.22
if (self.endEffectorPos[1]>0.22):
self.endEffectorPos[1]=0.22
#print ("self.endEffectorPos[2]")
#print (self.endEffectorPos[2])
#print("actualEndEffectorPos[2]")
#print(actualEndEffectorPos[2])
if (dz>0 or actualEndEffectorPos[2]>0.10):
self.endEffectorPos[2] = self.endEffectorPos[2]+dz
if (actualEndEffectorPos[2]<0.10):
self.endEffectorPos[2] = self.endEffectorPos[2]+0.0001
self.endEffectorAngle = self.endEffectorAngle + da
pos = self.endEffectorPos
orn = p.getQuaternionFromEuler([0,-math.pi,0]) # -math.pi,yaw])
if (self.useNullSpace==1):
if (self.useOrientation==1):
jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,orn,self.ll,self.ul,self.jr,self.rp)
else:
jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,lowerLimits=self.ll, upperLimits=self.ul, jointRanges=self.jr, restPoses=self.rp)
else:
if (self.useOrientation==1):
jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos,orn,jointDamping=self.jd)
else:
jointPoses = p.calculateInverseKinematics(self.kukaUid,self.kukaEndEffectorIndex,pos)
#print("jointPoses")
#print(jointPoses)
#print("self.kukaEndEffectorIndex")
#print(self.kukaEndEffectorIndex)
if (self.useSimulation):
for i in range (self.kukaEndEffectorIndex+1):
#print(i)
p.setJointMotorControl2(bodyIndex=self.kukaUid,jointIndex=i,controlMode=p.POSITION_CONTROL,targetPosition=jointPoses[i],targetVelocity=0,force=self.maxForce,positionGain=0.03,velocityGain=1)
else:
#reset the joint state (ignoring all dynamics, not recommended to use during simulation)
for i in range (self.numJoints):
p.resetJointState(self.kukaUid,i,jointPoses[i])
#fingers
p.setJointMotorControl2(self.kukaUid,7,p.POSITION_CONTROL,targetPosition=self.endEffectorAngle,force=self.maxForce)
p.setJointMotorControl2(self.kukaUid,8,p.POSITION_CONTROL,targetPosition=-fingerAngle,force=self.fingerAForce)
p.setJointMotorControl2(self.kukaUid,11,p.POSITION_CONTROL,targetPosition=fingerAngle,force=self.fingerBForce)
p.setJointMotorControl2(self.kukaUid,10,p.POSITION_CONTROL,targetPosition=0,force=self.fingerTipForce)
p.setJointMotorControl2(self.kukaUid,13,p.POSITION_CONTROL,targetPosition=0,force=self.fingerTipForce)
else:
for action in range (len(motorCommands)):
motor = self.motorIndices[action]
p.setJointMotorControl2(self.kukaUid,motor,p.POSITION_CONTROL,targetPosition=motorCommands[action],force=self.maxForce)

View File

@@ -0,0 +1,192 @@
import os
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
class KukaCamGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=1,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self._width = 341
self._height = 256
self.terminated = 0
self._p = p
if self._renders:
p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33])
else:
p.connect(p.DIRECT)
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(7)
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4))
self.viewer = None
def _reset(self):
print("reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
p.setTimeStep(self._timeStep)
p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","plane.urdf"),[0,0,-1])
p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.5 +0.05*random.random()
ypos = 0 +0.05*random.random()
ang = 3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF(os.path.join(os.path.dirname(__file__),"../data","block.urdf"), xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
#camEyePos = [0.03,0.236,0.54]
#distance = 1.06
#pitch=-56
#yaw = 258
#roll=0
#upAxisIndex = 2
#camInfo = p.getDebugVisualizerCamera()
#print("width,height")
#print(camInfo[0])
#print(camInfo[1])
#print("viewMatrix")
#print(camInfo[2])
#print("projectionMatrix")
#print(camInfo[3])
#viewMat = camInfo[2]
#viewMat = p.computeViewMatrixFromYawPitchRoll(camEyePos,distance,yaw, pitch,roll,upAxisIndex)
viewMat = [-0.5120397806167603, 0.7171027660369873, -0.47284144163131714, 0.0, -0.8589617609977722, -0.42747554183006287, 0.28186774253845215, 0.0, 0.0, 0.5504802465438843, 0.8348482847213745, 0.0, 0.1925382763147354, -0.24935829639434814, -0.4401884973049164, 1.0]
#projMatrix = camInfo[3]#[0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0]
projMatrix = [0.75, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0]
img_arr = p.getCameraImage(width=self._width,height=self._height,viewMatrix=viewMat,projectionMatrix=projMatrix)
rgb=img_arr[2]
np_img_arr = np.reshape(rgb, (self._height, self._width, 4))
self._observation = np_img_arr
return self._observation
def _step(self, action):
dv = 0.01
dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.1,0.1][action]
f = 0.3
realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction)
def step2(self, action):
self._kuka.applyAction(action)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
reward = self._reward()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
#print (self._kuka.endEffectorPos[2])
state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter>1000):
self._observation = self.getExtendedObservation()
return True
if (actualEndEffectorPos[2] <= 0.10):
self.terminated = 1
#print("closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range (1000):
graspAction = [0,0,0.001,0,fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
fingerAngle = fingerAngle-(0.3/100.)
if (fingerAngle<0):
fingerAngle=0
self._observation = self.getExtendedObservation()
return True
return False
def _reward(self):
#rewards is height of target object
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000)
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2):
print("grasped a block!!!")
print("self._envStepCounter")
print(self._envStepCounter)
reward = reward+1000
#print("reward")
#print(reward)
return reward

View File

@@ -0,0 +1,176 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
class KukaGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=1,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 1./240.
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self.terminated = 0
self._p = p
if self._renders:
p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33])
else:
p.connect(p.DIRECT)
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(7)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
print("reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
p.setTimeStep(self._timeStep)
p.loadURDF("%splane.urdf" % self._urdfRoot,[0,0,-1])
p.loadURDF("table/table.urdf", 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0)
xpos = 0.5 +0.05*random.random()
ypos = 0 +0.05*random.random()
ang = 3.1415925438*random.random()
orn = p.getQuaternionFromEuler([0,0,ang])
self.blockUid =p.loadURDF("block.urdf", xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3])
p.setGravity(0,0,-10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
eeState = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
endEffectorPos = eeState[0]
endEffectorOrn = eeState[1]
blockPos,blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invEEPos,invEEOrn = p.invertTransform(endEffectorPos,endEffectorOrn)
blockPosInEE,blockOrnInEE = p.multiplyTransforms(invEEPos,invEEOrn,blockPos,blockOrn)
blockEulerInEE = p.getEulerFromQuaternion(blockOrnInEE)
self._observation.extend(list(blockPosInEE))
self._observation.extend(list(blockEulerInEE))
return self._observation
def _step(self, action):
dv = 0.01
dx = [0,-dv,dv,0,0,0,0][action]
dy = [0,0,0,-dv,dv,0,0][action]
da = [0,0,0,0,0,-0.1,0.1][action]
f = 0.3
realAction = [dx,dy,-0.002,da,f]
return self.step2( realAction)
def step2(self, action):
self._kuka.applyAction(action)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
reward = self._reward()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
#print (self._kuka.endEffectorPos[2])
state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter>1000):
self._observation = self.getExtendedObservation()
return True
if (actualEndEffectorPos[2] <= 0.10):
self.terminated = 1
#print("closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range (1000):
graspAction = [0,0,0.001,0,fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
fingerAngle = fingerAngle-(0.3/100.)
if (fingerAngle<0):
fingerAngle=0
self._observation = self.getExtendedObservation()
return True
return False
def _reward(self):
#rewards is height of target object
blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000)
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]*10
if (blockPos[2] >0.2):
print("grasped a block!!!")
print("self._envStepCounter")
print(self._envStepCounter)
reward = reward+1000
#print("reward")
#print(reward)
return reward

View File

@@ -0,0 +1,142 @@
import pybullet as p
import numpy as np
class Minitaur:
def __init__(self, urdfRootPath=''):
self.urdfRootPath = urdfRootPath
self.reset()
def applyAction(self, motorCommands):
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getObservation(self):
observation = []
observation.extend(self.getMotorAngles().tolist())
observation.extend(self.getMotorVelocities().tolist())
observation.extend(self.getMotorTorques().tolist())
observation.extend(list(self.getBaseOrientation()))
observation.extend(list(self.getBasePosition()))
return observation
def getActionDimension(self):
return self.nMotors
def getObservationDimension(self):
return len(self.getObservation())
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(self.quadruped, i)
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
self.resetPose()
for i in range(100):
p.stepSimulation()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
self.quadruped = p.loadURDF("%s/quadruped/quadruped.urdf" % self.urdfRootPath,0,0,.3)
self.kp = 1
self.kd = 0.1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [1, -1, 1, -1, -1, 1, -1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def disableAllMotors(self):
nJoints = p.getNumJoints(self.quadruped)
for i in range(nJoints):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=i, controlMode=p.VELOCITY_CONTROL, force=0)
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
#right front leg
self.disableAllMotors()
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.01,0.2],[0,-0.015,0.2])
self.setMotorAngleByName('motor_front_rightR_joint', 1.57)
self.setMotorAngleByName('motor_front_rightL_joint',-1.57)
#left front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,-0.01,0.2],[0,0.015,0.2])
self.setMotorAngleByName('motor_front_leftR_joint', 1.57)
self.setMotorAngleByName('motor_front_leftL_joint',-1.57)
#right back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.01,0.2],[0,-0.015,0.2])
self.setMotorAngleByName('motor_back_rightR_joint', 1.57)
self.setMotorAngleByName('motor_back_rightL_joint',-1.57)
#left back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],-2.2)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],-1.57)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],2.2)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,-0.01,0.2],[0,0.015,0.2])
self.setMotorAngleByName('motor_back_leftR_joint', 1.57)
self.setMotorAngleByName('motor_back_leftL_joint',-1.57)
def getBasePosition(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return position
def getBaseOrientation(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return orientation
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques

View File

@@ -0,0 +1,113 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
import minitaur_new
class MinitaurGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=1,
isEnableSelfCollision=True,
motorVelocityLimit=10.0,
render=False):
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._motorVelocityLimit = motorVelocityLimit
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._render = render
self._lastBasePosition = [0, 0, 0]
if self._render:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = self._minitaur.getObservationDimension()
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
actionDim = 8
action_high = np.array([1] * actionDim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
p.loadURDF("%splane.urdf" % self._urdfRoot)
p.setGravity(0,0,-10)
self._minitaur = minitaur_new.Minitaur(urdfRootPath=self._urdfRoot, timeStep=self._timeStep, isEnableSelfCollision=self._isEnableSelfCollision, motorVelocityLimit=self._motorVelocityLimit)
self._envStepCounter = 0
self._lastBasePosition = [0, 0, 0]
for i in range(100):
p.stepSimulation()
self._observation = self._minitaur.getObservation()
return self._observation
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
if (self._render):
basePos = self._minitaur.getBasePosition()
p.resetDebugVisualizerCamera(1, 30, 40, basePos)
if len(action) != self._minitaur.getActionDimension():
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(action)))
for i in range(len(action)):
if not -1.01 <= action[i] <= 1.01:
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
realAction = self._minitaur.convertFromLegModel(action)
self._minitaur.applyAction(realAction)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._render:
time.sleep(self._timeStep)
self._observation = self._minitaur.getObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def is_fallen(self):
orientation = self._minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaternion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0 or self._observation[-1] < 0.1
def _termination(self):
return self.is_fallen()
def _reward(self):
currentBasePosition = self._minitaur.getBasePosition()
forward_reward = currentBasePosition[0] - self._lastBasePosition[0]
self._lastBasePosition = currentBasePosition
energyWeight = 0.001
energy = np.abs(np.dot(self._minitaur.getMotorTorques(), self._minitaur.getMotorVelocities())) * self._timeStep
energy_reward = energyWeight * energy
reward = forward_reward - energy_reward
return reward

View File

@@ -0,0 +1,90 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from pybullet_envs.bullet.minitaur import Minitaur
class MinitaurBulletEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
self._timeStep = 0.01
self._observation = []
self._envStepCounter = 0
self._lastBasePosition = [0, 0, 0]
p.connect(p.GUI)
p.resetSimulation()
p.setTimeStep(self._timeStep)
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
self._minitaur = Minitaur()
observationDim = self._minitaur.getObservationDimension()
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
actionDim = 8
action_high = np.array([math.pi / 2.0] * actionDim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self._seed()
self.reset()
self.viewer = None
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _step(self, action):
if len(action) != self._minitaur.getActionDimension():
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(actions.continuous_actions)))
for i in range(len(action)):
if not -math.pi/2 <= action[i] <= math.pi/2:
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
action[i] += math.pi / 2
self._minitaur.applyAction(action)
p.stepSimulation()
self._observation = self._minitaur.getObservation()
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
return np.array(self._observation), reward, done, {}
def _reset(self):
p.resetSimulation()
p.setTimeStep(self._timeStep)
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
self._minitaur = Minitaur()
self._observation = self._minitaur.getObservation()
def _render(self, mode='human', close=False):
return
def is_fallen(self):
orientation = self._minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaternion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
def _termination(self):
return self.is_fallen()
def _reward(self):
currentBasePosition = self._minitaur.getBasePosition()
reward = np.dot(np.asarray([-1, 0, 0]), np.asarray(currentBasePosition) - np.asarray(self._lastBasePosition))
self._lastBasePosition = currentBasePosition
return reward

View File

@@ -0,0 +1,176 @@
import pybullet as p
import numpy as np
import copy
import math
class Minitaur:
def __init__(self, urdfRootPath='', timeStep=0.01, isEnableSelfCollision=True, motorVelocityLimit=10.0):
self.urdfRootPath = urdfRootPath
self.isEnableSelfCollision = isEnableSelfCollision
self.motorVelocityLimit = motorVelocityLimit
self.timeStep = timeStep
self.reset()
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(self.quadruped, i)
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
self.resetPose()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
if self.isEnableSelfCollision:
self.quadruped = p.loadURDF("%s/quadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2], flags=p.URDF_USE_SELF_COLLISION)
else:
self.quadruped = p.loadURDF("%s/quadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2])
self.kp = 1
self.kd = 1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [-1, -1, -1, -1, 1, 1, 1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
kneeFrictionForce = 0
halfpi = 1.57079632679
kneeangle = -2.1834 #halfpi - acos(upper_leg_length / lower_leg_length)
#left front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],self.motorDir[0]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],self.motorDir[0]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],self.motorDir[1]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.motorDir[1]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_leftL_joint', self.motorDir[0]*halfpi)
self.setMotorAngleByName('motor_front_leftR_joint', self.motorDir[1]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#left back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],self.motorDir[2]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],self.motorDir[2]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],self.motorDir[3]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.motorDir[3]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_leftL_joint',self.motorDir[2]*halfpi)
self.setMotorAngleByName('motor_back_leftR_joint',self.motorDir[3]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],self.motorDir[4]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],self.motorDir[4]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],self.motorDir[5]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.motorDir[5]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_rightL_joint',self.motorDir[4]*halfpi)
self.setMotorAngleByName('motor_front_rightR_joint',self.motorDir[5]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],self.motorDir[6]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],self.motorDir[6]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],self.motorDir[7]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.motorDir[7]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_rightL_joint',self.motorDir[6]*halfpi)
self.setMotorAngleByName('motor_back_rightR_joint',self.motorDir[7]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
def getBasePosition(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return position
def getBaseOrientation(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return orientation
def getActionDimension(self):
return self.nMotors
def getObservationDimension(self):
return len(self.getObservation())
def getObservation(self):
observation = []
observation.extend(self.getMotorAngles().tolist())
observation.extend(self.getMotorVelocities().tolist())
observation.extend(self.getMotorTorques().tolist())
observation.extend(list(self.getBaseOrientation()))
return observation
def applyAction(self, motorCommands):
if self.motorVelocityLimit < np.inf:
currentMotorAngle = self.getMotorAngles()
motorCommandsMax = currentMotorAngle + self.timeStep * self.motorVelocityLimit
motorCommandsMin = currentMotorAngle - self.timeStep * self.motorVelocityLimit
motorCommands = np.clip(motorCommands, motorCommandsMin, motorCommandsMax)
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
# print('action: {}'.format(motorCommands))
# print('motor: {}'.format(motorCommandsWithDir))
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques
def convertFromLegModel(self, actions):
motorAngle = copy.deepcopy(actions)
scaleForSingularity = 1
offsetForSingularity = 0.5
motorAngle[0] = math.pi + math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
motorAngle[1] = math.pi - math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
motorAngle[2] = math.pi + math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
motorAngle[3] = math.pi - math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
motorAngle[4] = math.pi - math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
motorAngle[5] = math.pi + math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
motorAngle[6] = math.pi - math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
motorAngle[7] = math.pi + math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
return motorAngle

View File

@@ -0,0 +1,57 @@
import pybullet as p
import numpy as np
import copy
import math
class Racecar:
def __init__(self, urdfRootPath='', timeStep=0.01):
self.urdfRootPath = urdfRootPath
self.timeStep = timeStep
self.reset()
def reset(self):
self.racecarUniqueId = p.loadURDF("racecar/racecar.urdf", [0,0,.2])
self.maxForce = 20
self.nMotors = 2
self.motorizedwheels=[2]
self.inactiveWheels = [3,5,7]
for wheel in self.inactiveWheels:
p.setJointMotorControl2(self.racecarUniqueId,wheel,p.VELOCITY_CONTROL,targetVelocity=0,force=0)
self.motorizedWheels = [2]
self.steeringLinks=[4,6]
self.speedMultiplier = 4.
def getActionDimension(self):
return self.nMotors
def getObservationDimension(self):
return len(self.getObservation())
def getObservation(self):
observation = []
pos,orn=p.getBasePositionAndOrientation(self.racecarUniqueId)
observation.extend(list(pos))
observation.extend(list(orn))
return observation
def applyAction(self, motorCommands):
targetVelocity=motorCommands[0]*self.speedMultiplier
#print("targetVelocity")
#print(targetVelocity)
steeringAngle = motorCommands[1]
#print("steeringAngle")
#print(steeringAngle)
#print("maxForce")
#print(self.maxForce)
for motor in self.motorizedwheels:
p.setJointMotorControl2(self.racecarUniqueId,motor,p.VELOCITY_CONTROL,targetVelocity=targetVelocity,force=self.maxForce)
for steer in self.steeringLinks:
p.setJointMotorControl2(self.racecarUniqueId,steer,p.POSITION_CONTROL,targetPosition=steeringAngle)

View File

@@ -0,0 +1,134 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import racecar
import random
class RacecarGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=50,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._ballUniqueId = -1
self._envStepCounter = 0
self._renders = renders
self._p = p
if self._renders:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
#p.loadURDF("%splane.urdf" % self._urdfRoot)
stadiumobjects = p.loadSDF("%sstadium.sdf" % self._urdfRoot)
#move the stadium objects slightly above 0
for i in stadiumobjects:
pos,orn = p.getBasePositionAndOrientation(i)
newpos = [pos[0],pos[1],pos[2]+0.1]
p.resetBasePositionAndOrientation(i,newpos,orn)
dist = 5 +2.*random.random()
ang = 2.*3.1415925438*random.random()
ballx = dist * math.sin(ang)
bally = dist * math.cos(ang)
ballz = 1
self._ballUniqueId = p.loadURDF("sphere2.urdf",[ballx,bally,ballz])
p.setGravity(0,0,-10)
self._racecar = racecar.Racecar(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
for i in range(100):
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = [] #self._racecar.getObservation()
carpos,carorn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
ballpos,ballorn = p.getBasePositionAndOrientation(self._ballUniqueId)
invCarPos,invCarOrn = p.invertTransform(carpos,carorn)
ballPosInCar,ballOrnInCar = p.multiplyTransforms(invCarPos,invCarOrn,ballpos,ballorn)
self._observation.extend([ballPosInCar[0],ballPosInCar[1]])
return self._observation
def _step(self, action):
if (self._renders):
basePos,orn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
#p.resetDebugVisualizerCamera(1, 30, -40, basePos)
fwd = [-5,-5,-5,0,0,0,5,5,5]
steerings = [-0.3,0,0.3,-0.3,0,0.3,-0.3,0,0.3]
forward = fwd[action]
steer = steerings[action]
realaction = [forward,steer]
self._racecar.applyAction(realaction)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return self._envStepCounter>1000
def _reward(self):
closestPoints = p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000)
numPt = len(closestPoints)
reward=-1000
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]
#print(reward)
return reward

View File

@@ -0,0 +1,148 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import racecar
import random
class RacecarZEDGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=100,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._ballUniqueId = -1
self._envStepCounter = 0
self._renders = renders
self._width = 100
self._height = 10
self._p = p
if self._renders:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(6)
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4))
self.viewer = None
def _reset(self):
p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
#p.loadURDF("%splane.urdf" % self._urdfRoot)
stadiumobjects = p.loadSDF("%sstadium.sdf" % self._urdfRoot)
#move the stadium objects slightly above 0
for i in stadiumobjects:
pos,orn = p.getBasePositionAndOrientation(i)
newpos = [pos[0],pos[1],pos[2]+0.1]
p.resetBasePositionAndOrientation(i,newpos,orn)
dist = 5 +2.*random.random()
ang = 2.*3.1415925438*random.random()
ballx = dist * math.sin(ang)
bally = dist * math.cos(ang)
ballz = 1
self._ballUniqueId = p.loadURDF("sphere2red.urdf",[ballx,bally,ballz])
p.setGravity(0,0,-10)
self._racecar = racecar.Racecar(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
for i in range(100):
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
carpos,carorn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
carmat = p.getMatrixFromQuaternion(carorn)
ballpos,ballorn = p.getBasePositionAndOrientation(self._ballUniqueId)
invCarPos,invCarOrn = p.invertTransform(carpos,carorn)
ballPosInCar,ballOrnInCar = p.multiplyTransforms(invCarPos,invCarOrn,ballpos,ballorn)
dist0 = 0.3
dist1 = 1.
eyePos = [carpos[0]+dist0*carmat[0],carpos[1]+dist0*carmat[3],carpos[2]+dist0*carmat[6]+0.3]
targetPos = [carpos[0]+dist1*carmat[0],carpos[1]+dist1*carmat[3],carpos[2]+dist1*carmat[6]+0.3]
up = [carmat[2],carmat[5],carmat[8]]
viewMat = p.computeViewMatrix(eyePos,targetPos,up)
#viewMat = p.computeViewMatrixFromYawPitchRoll(carpos,1,0,0,0,2)
#print("projectionMatrix:")
#print(p.getDebugVisualizerCamera()[3])
projMatrix = [0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0]
img_arr = p.getCameraImage(width=self._width,height=self._height,viewMatrix=viewMat,projectionMatrix=projMatrix)
rgb=img_arr[2]
np_img_arr = np.reshape(rgb, (self._height, self._width, 4))
self._observation = np_img_arr
return self._observation
def _step(self, action):
if (self._renders):
basePos,orn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
#p.resetDebugVisualizerCamera(1, 30, -40, basePos)
fwd = [5,0,5,10,10,10]
steerings = [-0.5,0,0.5,-0.3,0,0.3]
forward = fwd[action]
steer = steerings[action]
realaction = [forward,steer]
self._racecar.applyAction(realaction)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return self._envStepCounter>1000
def _reward(self):
closestPoints = p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000)
numPt = len(closestPoints)
reward=-1000
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]
#print(reward)
return reward

View File

@@ -0,0 +1,124 @@
import pybullet as p
import numpy as np
import copy
import math
import time
class SimpleHumanoid:
def __init__(self, urdfRootPath='', timeStep=0.01):
self.urdfRootPath = urdfRootPath
self.timeStep = timeStep
self.reset()
def reset(self):
self.initial_z = None
objs = p.loadMJCF("mjcf/humanoid_symmetric_no_ground.xml",flags = p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS)
self.human = objs[0]
self.jdict = {}
self.ordered_joints = []
self.ordered_joint_indices = []
for j in range( p.getNumJoints(self.human) ):
info = p.getJointInfo(self.human, j)
link_name = info[12].decode("ascii")
if link_name=="left_foot": self.left_foot = j
if link_name=="right_foot": self.right_foot = j
self.ordered_joint_indices.append(j)
if info[2] != p.JOINT_REVOLUTE: continue
jname = info[1].decode("ascii")
self.jdict[jname] = j
lower, upper = (info[8], info[9])
self.ordered_joints.append( (j, lower, upper) )
p.setJointMotorControl2(self.human, j, controlMode=p.VELOCITY_CONTROL, force=0)
self.motor_names = ["abdomen_z", "abdomen_y", "abdomen_x"]
self.motor_power = [100, 100, 100]
self.motor_names += ["right_hip_x", "right_hip_z", "right_hip_y", "right_knee"]
self.motor_power += [100, 100, 300, 200]
self.motor_names += ["left_hip_x", "left_hip_z", "left_hip_y", "left_knee"]
self.motor_power += [100, 100, 300, 200]
self.motor_names += ["right_shoulder1", "right_shoulder2", "right_elbow"]
self.motor_power += [75, 75, 75]
self.motor_names += ["left_shoulder1", "left_shoulder2", "left_elbow"]
self.motor_power += [75, 75, 75]
self.motors = [self.jdict[n] for n in self.motor_names]
print("self.motors")
print(self.motors)
print("num motors")
print(len(self.motors))
def current_relative_position(self, jointStates, human, j, lower, upper):
#print("j")
#print(j)
#print (len(jointStates))
#print(j)
temp = jointStates[j]
pos = temp[0]
vel = temp[1]
#print("pos")
#print(pos)
#print("vel")
#print(vel)
pos_mid = 0.5 * (lower + upper);
return (
2 * (pos - pos_mid) / (upper - lower),
0.1 * vel
)
def collect_observations(self, human):
#print("ordered_joint_indices")
#print(ordered_joint_indices)
jointStates = p.getJointStates(human,self.ordered_joint_indices)
j = np.array([self.current_relative_position(jointStates, human, *jtuple) for jtuple in self.ordered_joints]).flatten()
#print("j")
#print(j)
body_xyz, (qx, qy, qz, qw) = p.getBasePositionAndOrientation(human)
#print("body_xyz")
#print(body_xyz, qx,qy,qz,qw)
z = body_xyz[2]
self.distance = body_xyz[0]
if self.initial_z==None:
self.initial_z = z
(vx, vy, vz), _ = p.getBaseVelocity(human)
more = np.array([z-self.initial_z, 0.1*vx, 0.1*vy, 0.1*vz, qx, qy, qz, qw])
rcont = p.getContactPoints(human, -1, self.right_foot, -1)
#print("rcont")
#print(rcont)
lcont = p.getContactPoints(human, -1, self.left_foot, -1)
#print("lcont")
#print(lcont)
feet_contact = np.array([len(rcont)>0, len(lcont)>0])
return np.clip( np.concatenate([more] + [j] + [feet_contact]), -5, +5)
def getActionDimension(self):
return len(self.motors)
def getObservationDimension(self):
return len(self.getObservation())
def getObservation(self):
observation = self.collect_observations(self.human)
return observation
def applyAction(self, actions):
forces = [0.] * len(self.motors)
for m in range(len(self.motors)):
forces[m] = self.motor_power[m]*actions[m]*0.082
p.setJointMotorControlArray(self.human, self.motors,controlMode=p.TORQUE_CONTROL, forces=forces)
p.stepSimulation()
time.sleep(0.01)
distance=5
yaw = 0
#humanPos, humanOrn = p.getBasePositionAndOrientation(self.human)
#p.resetDebugVisualizerCamera(distance,yaw,-20,humanPos);

View File

@@ -0,0 +1,102 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import simpleHumanoid
import random
class SimpleHumanoidGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=50,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self._p = p
if self._renders:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(9)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
p.loadURDF("%splane.urdf" % self._urdfRoot)
dist = 5 +2.*random.random()
ang = 2.*3.1415925438*random.random()
ballx = dist * math.sin(ang)
bally = dist * math.cos(ang)
ballz = 1
p.setGravity(0,0,-10)
self._humanoid = simpleHumanoid.SimpleHumanoid(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = self._humanoid.getObservation()
return self._observation
def _step(self, action):
self._humanoid.applyAction(action)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return self._envStepCounter>1000
def _reward(self):
reward=self._humanoid.distance
print(reward)
return reward