Added support for separating axis test for polyhedral shapes

Added initial support for polyhedral contact clipping. 
This clipping takes a separating normal, that can be computed using either SAT or GJK/EPA.
To enable clipping, use btPolyhedralConvexShape::initializePolyhedralFeatures(); (needs to be enabled for both convex shapes)
No concave trimesh support for SAT/clipping yet. To enable SAT, see the toggle in btConvexConvexAlgorithm.
Fixes in contact normal in btGjkPairDetector. Hopefully this doesn't cause any regression (we need unit tests!)
This commit is contained in:
erwin.coumans
2011-03-29 08:52:18 +00:00
parent 1f5af32203
commit 784e7fdb39
10 changed files with 824 additions and 8 deletions

View File

@@ -46,6 +46,7 @@ SET(BulletCollision_SRCS
CollisionShapes/btConvexHullShape.cpp
CollisionShapes/btConvexInternalShape.cpp
CollisionShapes/btConvexPointCloudShape.cpp
CollisionShapes/btConvexPolyhedron.cpp
CollisionShapes/btConvexShape.cpp
CollisionShapes/btConvex2dShape.cpp
CollisionShapes/btConvexTriangleMeshShape.cpp
@@ -92,6 +93,7 @@ SET(BulletCollision_SRCS
NarrowPhaseCollision/btRaycastCallback.cpp
NarrowPhaseCollision/btSubSimplexConvexCast.cpp
NarrowPhaseCollision/btVoronoiSimplexSolver.cpp
NarrowPhaseCollision/btPolyhedralContactClipping.cpp
)
SET(Root_HDRS
@@ -150,6 +152,7 @@ SET(CollisionShapes_HDRS
CollisionShapes/btConvexHullShape.h
CollisionShapes/btConvexInternalShape.h
CollisionShapes/btConvexPointCloudShape.h
CollisionShapes/btConvexPolyhedron.h
CollisionShapes/btConvexShape.h
CollisionShapes/btConvex2dShape.h
CollisionShapes/btConvexTriangleMeshShape.h
@@ -224,6 +227,7 @@ SET(NarrowPhaseCollision_HDRS
NarrowPhaseCollision/btSimplexSolverInterface.h
NarrowPhaseCollision/btSubSimplexConvexCast.h
NarrowPhaseCollision/btVoronoiSimplexSolver.h
NarrowPhaseCollision/btPolyhedralContactClipping.h
)
SET(BulletCollision_HDRS

View File

@@ -48,7 +48,7 @@ subject to the following restrictions:
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.h"
///////////
@@ -330,7 +330,6 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
}
#endif //BT_DISABLE_CAPSULE_CAPSULE_COLLIDER
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
@@ -389,6 +388,54 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
}
#endif //USE_SEPDISTANCE_UTIL2
if (min0->isPolyhedral() && min1->isPolyhedral())
{
btPolyhedralConvexShape* polyhedronA = (btPolyhedralConvexShape*) min0;
btPolyhedralConvexShape* polyhedronB = (btPolyhedralConvexShape*) min1;
if (polyhedronA->getConvexPolyhedron() && polyhedronB->getConvexPolyhedron())
{
btScalar maxDist = 0.f;
if (dispatchInfo.m_convexMaxDistanceUseCPT)
{
maxDist = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
} else
{
maxDist = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
}
maxDist =0.f;
btVector3 sepNormalWorldSpace;
//#define USE_SAT_TEST
#ifdef USE_SAT_TEST
bool foundSepAxis = btPolyhedralContactClipping::findSeparatingAxis(
*polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
body0->getWorldTransform(),
body1->getWorldTransform(),
sepNormalWorldSpace);
#else
bool foundSepAxis = true;
sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized();
#endif //USE_SAT_TEST
if (foundSepAxis)
{
btPolyhedralContactClipping::clipFaceContacts(sepNormalWorldSpace, *polyhedronA->getConvexPolyhedron(), *polyhedronB->getConvexPolyhedron(),
body0->getWorldTransform(),
body1->getWorldTransform(), maxDist, *resultOut);
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
return;
}
}
}
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points

View File

@@ -145,7 +145,7 @@ public:
virtual void getVertex(int i,btVector3& vtx) const
{
btVector3 halfExtents = getHalfExtentsWithoutMargin();
btVector3 halfExtents = getHalfExtentsWithMargin();
vtx = btVector3(
halfExtents.x() * (1-(i&1)) - halfExtents.x() * (i&1),

View File

@@ -0,0 +1,185 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///This file was written by Erwin Coumans
///Separating axis rest based on work from Pierre Terdiman, see
///And contact clipping based on work from Simon Hobbs
#include "btConvexPolyhedron.h"
#include "LinearMath/btHashMap.h"
btConvexPolyhedron::btConvexPolyhedron()
{
}
btConvexPolyhedron::~btConvexPolyhedron()
{
}
inline bool IsAlmostZero(const btVector3& v)
{
if(fabsf(v.x())>1e-6 || fabsf(v.y())>1e-6 || fabsf(v.z())>1e-6) return false;
return true;
}
struct btInternalVertexPair
{
btInternalVertexPair(short int v0,short int v1)
:m_v0(v0),
m_v1(v1)
{
if (m_v1>m_v0)
btSwap(m_v0,m_v1);
}
short int m_v0;
short int m_v1;
int getHash() const
{
return m_v0+(m_v1<<16);
}
bool equals(const btInternalVertexPair& other) const
{
return m_v0==other.m_v0 && m_v1==other.m_v1;
}
};
struct btInternalEdge
{
btInternalEdge()
:m_face0(-1),
m_face1(-1)
{
}
short int m_face0;
short int m_face1;
};
//
void btConvexPolyhedron::initialize()
{
btHashMap<btInternalVertexPair,btInternalEdge> edges;
float TotalArea = 0.0f;
m_localCenter.setValue(0, 0, 0);
for(int i=0;i<m_faces.size();i++)
{
int numVertices = m_faces[i].m_indices.size();
int NbTris = numVertices;
for(int j=0;j<NbTris;j++)
{
int k = (j+1)%numVertices;
btInternalVertexPair vp(m_faces[i].m_indices[j],m_faces[i].m_indices[k]);
btInternalEdge* edptr = edges.find(vp);
btVector3 edge = m_vertices[vp.m_v1]-m_vertices[vp.m_v0];
edge.normalize();
bool found = false;
for (int p=0;p<m_uniqueEdges.size();p++)
{
if (IsAlmostZero(m_uniqueEdges[p]-edge) ||
IsAlmostZero(m_uniqueEdges[p]+edge))
{
found = true;
break;
}
}
if (!found)
{
m_uniqueEdges.push_back(edge);
}
if (edptr)
{
btAssert(edptr->m_face0>=0);
btAssert(edptr->m_face1<0);
edptr->m_face1 = i;
} else
{
btInternalEdge ed;
ed.m_face0 = i;
edges.insert(vp,ed);
}
}
}
for(int i=0;i<m_faces.size();i++)
{
int numVertices = m_faces[i].m_indices.size();
m_faces[i].m_connectedFaces.resize(numVertices);
for(int j=0;j<numVertices;j++)
{
int k = (j+1)%numVertices;
btInternalVertexPair vp(m_faces[i].m_indices[j],m_faces[i].m_indices[k]);
btInternalEdge* edptr = edges.find(vp);
btAssert(edptr);
btAssert(edptr->m_face0>=0);
btAssert(edptr->m_face1>=0);
int connectedFace = (edptr->m_face0==i)?edptr->m_face1:edptr->m_face0;
m_faces[i].m_connectedFaces[j] = connectedFace;
}
}
for(int i=0;i<m_faces.size();i++)
{
int numVertices = m_faces[i].m_indices.size();
int NbTris = numVertices-2;
const btVector3& p0 = m_vertices[m_faces[i].m_indices[0]];
for(int j=1;j<=NbTris;j++)
{
int k = (j+1)%numVertices;
const btVector3& p1 = m_vertices[m_faces[i].m_indices[j]];
const btVector3& p2 = m_vertices[m_faces[i].m_indices[k]];
float Area = ((p0 - p1).cross(p0 - p2)).length() * 0.5f;
btVector3 Center = (p0+p1+p2)/3.0f;
m_localCenter += Area * Center;
TotalArea += Area;
}
}
m_localCenter /= TotalArea;
}
void btConvexPolyhedron::project(const btTransform& trans, const btVector3& dir, float& min, float& max) const
{
min = FLT_MAX;
max = -FLT_MAX;
int numVerts = m_vertices.size();
for(int i=0;i<numVerts;i++)
{
btVector3 pt = trans * m_vertices[i];
float dp = pt.dot(dir);
if(dp < min) min = dp;
if(dp > max) max = dp;
}
if(min>max)
{
float tmp = min;
min = max;
max = tmp;
}
}

View File

@@ -0,0 +1,54 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///This file was written by Erwin Coumans
#ifndef _BT_POLYHEDRAL_FEATURES_H
#define _BT_POLYHEDRAL_FEATURES_H
#include "LinearMath/btTransform.h"
#include "LinearMath/btAlignedObjectArray.h"
struct btFace
{
btAlignedObjectArray<int> m_indices;
btAlignedObjectArray<int> m_connectedFaces;
float m_plane[4];
};
class btConvexPolyhedron
{
public:
btConvexPolyhedron();
virtual ~btConvexPolyhedron();
btAlignedObjectArray<btVector3> m_vertices;
btAlignedObjectArray<btFace> m_faces;
btAlignedObjectArray<btVector3> m_uniqueEdges;
btVector3 m_localCenter;
void initialize();
void project(const btTransform& trans, const btVector3& dir, float& min, float& max) const;
};
#endif //_BT_POLYHEDRAL_FEATURES_H

View File

@@ -14,12 +14,140 @@ subject to the following restrictions:
*/
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
#include "btConvexPolyhedron.h"
#include "LinearMath/btConvexHullComputer.h"
#include <new.h>
btPolyhedralConvexShape::btPolyhedralConvexShape() :btConvexInternalShape()
btPolyhedralConvexShape::btPolyhedralConvexShape() :btConvexInternalShape(),
m_polyhedron(0)
{
}
btPolyhedralConvexShape::~btPolyhedralConvexShape()
{
if (m_polyhedron)
{
btAlignedFree(m_polyhedron);
}
}
bool btPolyhedralConvexShape::initializePolyhedralFeatures()
{
if (m_polyhedron)
btAlignedFree(m_polyhedron);
void* mem = btAlignedAlloc(sizeof(btConvexPolyhedron),16);
m_polyhedron = new (mem) btConvexPolyhedron;
btAlignedObjectArray<btVector3> tmpVertices;
for (int i=0;i<getNumVertices();i++)
{
btVector3& newVertex = tmpVertices.expand();
getVertex(i,newVertex);
}
btConvexHullComputer conv;
conv.compute(&tmpVertices[0].getX(), sizeof(btVector3),tmpVertices.size(),0.f,0.f);
btAlignedObjectArray<btVector3> faceNormals;
int numFaces = conv.faces.size();
faceNormals.resize(numFaces);
btConvexHullComputer* convexUtil = &conv;
m_polyhedron->m_faces.resize(numFaces);
int numVertices = convexUtil->vertices.size();
m_polyhedron->m_vertices.resize(numVertices);
for (int p=0;p<numVertices;p++)
{
m_polyhedron->m_vertices[p] = convexUtil->vertices[p];
}
for (int i=0;i<numFaces;i++)
{
int face = convexUtil->faces[i];
//printf("face=%d\n",face);
const btConvexHullComputer::Edge* firstEdge = &convexUtil->edges[face];
const btConvexHullComputer::Edge* edge = firstEdge;
btVector3 edges[3];
int numEdges = 0;
//compute face normals
btScalar maxCross2 = 0.f;
int chosenEdge = -1;
do
{
int src = edge->getSourceVertex();
m_polyhedron->m_faces[i].m_indices.push_back(src);
int targ = edge->getTargetVertex();
btVector3 wa = convexUtil->vertices[src];
btVector3 wb = convexUtil->vertices[targ];
btVector3 newEdge = wb-wa;
if (!newEdge.fuzzyZero())
{
newEdge.normalize();
if (!numEdges)
{
edges[numEdges++] = newEdge;
} else
{
btVector3 cr = (edges[0].cross(newEdge));
btScalar cr2 = cr.length2();
if (cr2 > maxCross2)
{
chosenEdge = m_polyhedron->m_faces[i].m_indices.size();
numEdges=1;//replace current edge
edges[numEdges++] = newEdge;
maxCross2=cr2;
}
}
}
edge = edge->getNextEdgeOfFace();
} while (edge!=firstEdge);
btScalar planeEq = 1e30f;
if (numEdges==2)
{
faceNormals[i] = edges[0].cross(edges[1]);
faceNormals[i].normalize();
m_polyhedron->m_faces[i].m_plane[0] = -faceNormals[i].getX();
m_polyhedron->m_faces[i].m_plane[1] = -faceNormals[i].getY();
m_polyhedron->m_faces[i].m_plane[2] = -faceNormals[i].getZ();
m_polyhedron->m_faces[i].m_plane[3] = planeEq;
}
else
{
btAssert(0);//degenerate?
faceNormals[i].setZero();
}
for (int v=0;v<m_polyhedron->m_faces[i].m_indices.size();v++)
{
btScalar eq = m_polyhedron->m_vertices[m_polyhedron->m_faces[i].m_indices[v]].dot(faceNormals[i]);
if (planeEq>eq)
{
planeEq=eq;
}
}
m_polyhedron->m_faces[i].m_plane[3] = planeEq;
}
m_polyhedron->initialize();
return true;
}
btVector3 btPolyhedralConvexShape::localGetSupportingVertexWithoutMargin(const btVector3& vec0)const
{
@@ -191,3 +319,6 @@ void btPolyhedralConvexAabbCachingShape::recalcLocalAabb()
#endif
}

View File

@@ -18,18 +18,32 @@ subject to the following restrictions:
#include "LinearMath/btMatrix3x3.h"
#include "btConvexInternalShape.h"
class btConvexPolyhedron;
///The btPolyhedralConvexShape is an internal interface class for polyhedral convex shapes.
class btPolyhedralConvexShape : public btConvexInternalShape
{
protected:
btConvexPolyhedron* m_polyhedron;
public:
btPolyhedralConvexShape();
virtual ~btPolyhedralConvexShape();
///optional method mainly used to generate multiple contact points by clipping polyhedral features (faces/edges)
virtual bool initializePolyhedralFeatures();
const btConvexPolyhedron* getConvexPolyhedron() const
{
return m_polyhedron;
}
//brute force implementations
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;

View File

@@ -254,20 +254,21 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
}
#endif //
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
//are we getting any closer ?
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
{
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
if (m_curIter++ > gGjkMaxIter)
{
@@ -294,7 +295,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
if (!check)
{
//do we need this backup_closest here ?
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
@@ -303,7 +304,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
if (checkSimplex)
{
m_simplexSolver->compute_points(pointOnA, pointOnB);
normalInB = pointOnA-pointOnB;
normalInB = m_cachedSeparatingAxis;
btScalar lenSqr =m_cachedSeparatingAxis.length2();
//valid normal

View File

@@ -0,0 +1,337 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///This file was written by Erwin Coumans
///Separating axis rest based on work from Pierre Terdiman, see
///And contact clipping based on work from Simon Hobbs
#include "btPolyhedralContactClipping.h"
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
#include <float.h> //for FLT_MAX
// Clips a face to the back of a plane
void btPolyhedralContactClipping::clipFace(const btVertexArray& pVtxIn, btVertexArray& ppVtxOut, const btVector3& planeNormalWS,btScalar planeEqWS)
{
int ve;
btScalar ds, de;
int numVerts = pVtxIn.size();
if (numVerts < 2)
return;
btVector3 firstVertex=pVtxIn[pVtxIn.size()-1];
btVector3 endVertex = pVtxIn[0];
ds = planeNormalWS.dot(firstVertex)+planeEqWS;
for (ve = 0; ve < numVerts; ve++)
{
endVertex=pVtxIn[ve];
de = planeNormalWS.dot(endVertex)+planeEqWS;
if (ds<0)
{
if (de<0)
{
// Start < 0, end < 0, so output endVertex
ppVtxOut.push_back(endVertex);
}
else
{
// Start < 0, end >= 0, so output intersection
ppVtxOut.push_back( firstVertex.lerp(endVertex,btScalar(ds * 1.f/(ds - de))));
}
}
else
{
if (de<0)
{
// Start >= 0, end < 0 so output intersection and end
ppVtxOut.push_back(firstVertex.lerp(endVertex,btScalar(ds * 1.f/(ds - de))));
ppVtxOut.push_back(endVertex);
}
}
firstVertex = endVertex;
ds = de;
}
}
#include <stdio.h>
static bool TestSepAxis(const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, const btVector3& sep_axis, float& depth)
{
float Min0,Max0;
float Min1,Max1;
hullA.project(transA,sep_axis, Min0, Max0);
hullB.project(transB, sep_axis, Min1, Max1);
if(Max0<Min1 || Max1<Min0)
return false;
float d0 = Max0 - Min1;
assert(d0>=0.0f);
float d1 = Max1 - Min0;
assert(d1>=0.0f);
depth = d0<d1 ? d0:d1;
return true;
}
static int gActualSATPairTests=0;
inline bool IsAlmostZero(const btVector3& v)
{
if(fabsf(v.x())>1e-6 || fabsf(v.y())>1e-6 || fabsf(v.z())>1e-6) return false;
return true;
}
bool btPolyhedralContactClipping::findSeparatingAxis( const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, btVector3& sep)
{
gActualSATPairTests++;
#ifdef TEST_INTERNAL_OBJECTS
const btVector3 c0 = transA * hullA.mLocalCenter;
const btVector3 c1 = transB * hullB.mLocalCenter;
const btVector3 DeltaC2 = c0 - c1;
#endif
float dmin = FLT_MAX;
int curPlaneTests=0;
int numFacesA = hullA.m_faces.size();
// Test normals from hullA
for(int i=0;i<numFacesA;i++)
{
const btVector3 Normal(hullA.m_faces[i].m_plane[0], hullA.m_faces[i].m_plane[1], hullA.m_faces[i].m_plane[2]);
const btVector3 faceANormalWS = transA.getBasis() * Normal;
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, faceANormalWS, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
float d;
if(!TestSepAxis( hullA, hullB, transA,transB, faceANormalWS, d))
return false;
if(d<dmin)
{
dmin = d;
sep = faceANormalWS;
}
}
int numFacesB = hullB.m_faces.size();
// Test normals from hullB
for(int i=0;i<numFacesB;i++)
{
const btVector3 Normal(hullB.m_faces[i].m_plane[0], hullB.m_faces[i].m_plane[1], hullB.m_faces[i].m_plane[2]);
const btVector3 WorldNormal = transB.getBasis() * Normal;
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, WorldNormal, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
float d;
if(!TestSepAxis(hullA, hullB,transA,transB, WorldNormal,d))
return false;
if(d<dmin)
{
dmin = d;
sep = WorldNormal;
}
}
btVector3 edgeAstart,edgeAend,edgeBstart,edgeBend;
int curEdgeEdge = 0;
// Test edges
for(int e0=0;e0<hullA.m_uniqueEdges.size();e0++)
{
const btVector3 edge0 = hullA.m_uniqueEdges[e0];
const btVector3 WorldEdge0 = transA.getBasis() * edge0;
for(int e1=0;e1<hullB.m_uniqueEdges.size();e1++)
{
const btVector3 edge1 = hullB.m_uniqueEdges[e1];
const btVector3 WorldEdge1 = transB.getBasis() * edge1;
btVector3 Cross = WorldEdge0.cross(WorldEdge1);
curEdgeEdge++;
if(!IsAlmostZero(Cross))
{
Cross = Cross.normalize();
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, Cross, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
float dist;
if(!TestSepAxis( hullA, hullB, transA,transB, Cross, dist))
return false;
if(dist<dmin)
{
dmin = dist;
sep = Cross;
}
}
}
}
}
void btPolyhedralContactClipping::clipFaceContacts(const btVector3& separatingNormal, const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, const btScalar maxDist, btDiscreteCollisionDetectorInterface::Result& resultOut)
{
btScalar curMaxDist=maxDist;
int closestFaceA=-1, closestFaceB=-1;
{
btScalar dmax = -FLT_MAX;
for(int face=0;face<hullB.m_faces.size();face++)
{
const btVector3 Normal(hullB.m_faces[face].m_plane[0], hullB.m_faces[face].m_plane[1], hullB.m_faces[face].m_plane[2]);
const btVector3 WorldNormal = transB.getBasis() * Normal;
btScalar d = WorldNormal.dot(separatingNormal);
if (d > dmax)
{
dmax = d;
closestFaceB = face;
}
}
}
{
btScalar dmin = FLT_MAX;
for(int face=0;face<hullA.m_faces.size();face++)
{
const btVector3 Normal(hullA.m_faces[face].m_plane[0], hullA.m_faces[face].m_plane[1], hullA.m_faces[face].m_plane[2]);
const btVector3 faceANormalWS = transA.getBasis() * Normal;
btScalar d = faceANormalWS.dot(separatingNormal);
if (d < dmin)
{
dmin = d;
closestFaceA = face;
}
}
}
if (closestFaceA<0 || closestFaceB<0)
{
return;
}
// setup initial clip face (minimizing face from hull B)
btVertexArray worldVertsB1;
btVertexArray worldVertsB2;
btVertexArray* pVtxIn = &worldVertsB1;
btVertexArray* pVtxOut = &worldVertsB2;
const btFace& polyA = hullA.m_faces[closestFaceA];
{
const btFace& polyB = hullB.m_faces[closestFaceB];
const int numVertices = polyB.m_indices.size();
for(int e0=0;e0<numVertices;e0++)
{
const btVector3& b = hullB.m_vertices[polyB.m_indices[e0]];
pVtxIn->push_back(transB*b);
}
}
pVtxOut->reserve(pVtxIn->size());
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
int numContacts = pVtxIn->size();
int numVerticesA = polyA.m_indices.size();
for(int e0=0;e0<numVerticesA;e0++)
{
const btVector3& a = hullA.m_vertices[polyA.m_indices[e0]];
const btVector3& b = hullA.m_vertices[polyA.m_indices[(e0+1)%numVerticesA]];
const btVector3 edge0 = a - b;
const btVector3 WorldEdge0 = transA.getBasis() * edge0;
int otherFace = polyA.m_connectedFaces[e0];
btVector3 localPlaneNormal (hullA.m_faces[otherFace].m_plane[0],hullA.m_faces[otherFace].m_plane[1],hullA.m_faces[otherFace].m_plane[2]);
btScalar localPlaneEq = hullA.m_faces[otherFace].m_plane[3];
btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal;
btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin());
//clip face
clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
btSwap(pVtxIn,pVtxOut);
pVtxOut->resize(0);
}
//#define ONLY_REPORT_DEEPEST_POINT
btVector3 point;
// only keep points that are behind the witness face
{
btVector3 localPlaneNormal (polyA.m_plane[0],polyA.m_plane[1],polyA.m_plane[2]);
btScalar localPlaneEq = polyA.m_plane[3];
btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal;
btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin());
for (int i=0;i<pVtxIn->size();i++)
{
btScalar depth = planeNormalWS.dot(pVtxIn->at(i))+planeEqWS;
if (depth <=0)
{
btVector3 point = pVtxIn->at(i);
#ifdef ONLY_REPORT_DEEPEST_POINT
curMaxDist = depth;
#else
#if 0
if (depth<-3)
{
printf("error in btPolyhedralContactClipping depth = %f\n", depth);
printf("likely wrong separatingNormal passed in\n");
}
#endif
resultOut.addContactPoint(separatingNormal,point,depth);
#endif
}
}
}
#ifdef ONLY_REPORT_DEEPEST_POINT
if (curMaxDist<maxDist)
{
resultOut.addContactPoint(separatingNormal,point,curMaxDist);
}
#endif //ONLY_REPORT_DEEPEST_POINT
}

View File

@@ -0,0 +1,43 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///This file was written by Erwin Coumans
#ifndef __POLYHEDRAL_CONTACT_CLIPPING_H
#define __POLYHEDRAL_CONTACT_CLIPPING_H
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btTransform.h"
#include "btDiscreteCollisionDetectorInterface.h"
class btConvexPolyhedron;
typedef btAlignedObjectArray<btVector3> btVertexArray;
// Clips a face to the back of a plane
struct btPolyhedralContactClipping
{
static void clipFaceContacts(const btVector3& separatingNormal, const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, const btScalar maxDist, btDiscreteCollisionDetectorInterface::Result& resultOut);
static void clipFace(const btVertexArray& pVtxIn, btVertexArray& ppVtxOut, const btVector3& planeNormalWS,btScalar planeEqWS);
static bool findSeparatingAxis( const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, btVector3& sep);
};
#endif // __POLYHEDRAL_CONTACT_CLIPPING_H