enable convex separation util, potentially improves performance. set threshold to zero (docs follow)

fix scaling issue with btConvexHullShape
use virtual getSupportingVertex on non-SPU platform
This commit is contained in:
erwin.coumans
2008-11-06 23:38:18 +00:00
parent c1fc609d74
commit a4c205afc0
13 changed files with 847 additions and 979 deletions

View File

@@ -47,7 +47,7 @@ struct btDispatcherInfo
m_useEpa(true),
m_allowedCcdPenetration(btScalar(0.04)),
m_useConvexConservativeDistanceUtil(true),
m_convexConservativeDistanceThreshold(0.01f),
m_convexConservativeDistanceThreshold(0.0f),
m_stackAllocator(0)
{

View File

@@ -129,22 +129,31 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
//TODO: if (dispatchInfo.m_useContinuous)
gjkPairDetector.setMinkowskiA(min0);
gjkPairDetector.setMinkowskiB(min1);
input.m_maximumDistanceSquared = 1e30f;//min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
//input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
// input.m_maximumDistanceSquared = btScalar(1e30);
#ifdef USE_SEPDISTANCE_UTIL2
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
input.m_maximumDistanceSquared = 1e30f;
} else
#endif //USE_SEPDISTANCE_UTIL2
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
input.m_transformA = body0->getWorldTransform();
input.m_transformB = body1->getWorldTransform();
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
btScalar sepDist = gjkPairDetector.getCachedSeparatingDistance()+dispatchInfo.m_convexConservativeDistanceThreshold;
#ifdef USE_SEPDISTANCE_UTIL2
m_sepDistance.initSeparatingDistance(m_gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
if (dispatchInfo.m_useConvexConservativeDistanceUtil)
{
m_sepDistance.initSeparatingDistance(gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
}
#endif //USE_SEPDISTANCE_UTIL2

View File

@@ -27,7 +27,7 @@ subject to the following restrictions:
class btConvexPenetrationDepthSolver;
//#define USE_SEPDISTANCE_UTIL2 1
#define USE_SEPDISTANCE_UTIL2 1
///ConvexConvexAlgorithm collision algorithm implements time of impact, convex closest points and penetration depth calculations.
class btConvexConvexAlgorithm : public btCollisionAlgorithm

View File

@@ -22,14 +22,14 @@ subject to the following restrictions:
btConvexHullShape ::btConvexHullShape (const btScalar* points,int numPoints,int stride) : btPolyhedralConvexShape ()
{
m_shapeType = CONVEX_HULL_SHAPE_PROXYTYPE;
m_points.resize(numPoints);
m_unscaledPoints.resize(numPoints);
unsigned char* pointsBaseAddress = (unsigned char*)points;
for (int i=0;i<numPoints;i++)
{
btVector3* point = (btVector3*)(pointsBaseAddress + i*stride);
m_points[i] = point[0];
m_unscaledPoints[i] = point[0];
}
recalcLocalAabb();
@@ -46,7 +46,7 @@ void btConvexHullShape::setLocalScaling(const btVector3& scaling)
void btConvexHullShape::addPoint(const btVector3& point)
{
m_points.push_back(point);
m_unscaledPoints.push_back(point);
recalcLocalAabb();
}
@@ -68,9 +68,9 @@ btVector3 btConvexHullShape::localGetSupportingVertexWithoutMargin(const btVecto
}
for (int i=0;i<m_points.size();i++)
for (int i=0;i<m_unscaledPoints.size();i++)
{
btVector3 vtx = m_points[i] * m_localScaling;
btVector3 vtx = m_unscaledPoints[i] * m_localScaling;
newDot = vec.dot(vtx);
if (newDot > maxDot)
@@ -92,9 +92,9 @@ void btConvexHullShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const
supportVerticesOut[i][3] = btScalar(-1e30);
}
}
for (int i=0;i<m_points.size();i++)
for (int i=0;i<m_unscaledPoints.size();i++)
{
btVector3 vtx = m_points[i] * m_localScaling;
btVector3 vtx = getScaledPoint(i);
for (int j=0;j<numVectors;j++)
{
@@ -145,26 +145,26 @@ btVector3 btConvexHullShape::localGetSupportingVertex(const btVector3& vec)const
//Please note that you can debug-draw btConvexHullShape with the Raytracer Demo
int btConvexHullShape::getNumVertices() const
{
return m_points.size();
return m_unscaledPoints.size();
}
int btConvexHullShape::getNumEdges() const
{
return m_points.size();
return m_unscaledPoints.size();
}
void btConvexHullShape::getEdge(int i,btVector3& pa,btVector3& pb) const
{
int index0 = i%m_points.size();
int index1 = (i+1)%m_points.size();
pa = m_points[index0]*m_localScaling;
pb = m_points[index1]*m_localScaling;
int index0 = i%m_unscaledPoints.size();
int index1 = (i+1)%m_unscaledPoints.size();
pa = getScaledPoint(index0);
pb = getScaledPoint(index1);
}
void btConvexHullShape::getVertex(int i,btVector3& vtx) const
{
vtx = m_points[i]*m_localScaling;
vtx = getScaledPoint(i);
}
int btConvexHullShape::getNumPlanes() const

View File

@@ -24,7 +24,7 @@ subject to the following restrictions:
///Bullet provides a general and fast collision detector for convex shapes based on GJK and EPA using localGetSupportingVertex.
ATTRIBUTE_ALIGNED16(class) btConvexHullShape : public btPolyhedralConvexShape
{
btAlignedObjectArray<btVector3> m_points;
btAlignedObjectArray<btVector3> m_unscaledPoints;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
@@ -37,19 +37,24 @@ public:
void addPoint(const btVector3& point);
btVector3* getPoints()
btVector3* getUnscaledPoints()
{
return &m_points[0];
return &m_unscaledPoints[0];
}
const btVector3* getPoints() const
const btVector3* getUnscaledPoints() const
{
return &m_points[0];
return &m_unscaledPoints[0];
}
int getNumPoints() const
SIMD_FORCE_INLINE btVector3 getScaledPoint(int i) const
{
return m_points.size();
return m_unscaledPoints[i] * m_localScaling;
}
SIMD_FORCE_INLINE int getNumPoints() const
{
return m_unscaledPoints.size();
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;

View File

@@ -17,8 +17,9 @@ subject to the following restrictions:
#include "btConvexInternalShape.h"
btConvexInternalShape::btConvexInternalShape()
: btConvexShape (), m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.)),
: m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.)),
m_collisionMargin(CONVEX_DISTANCE_MARGIN)
{
}
@@ -51,6 +52,7 @@ void btConvexInternalShape::getAabbSlow(const btTransform& trans,btVector3&minAa
}
btVector3 btConvexInternalShape::localGetSupportingVertex(const btVector3& vec)const
{
#ifndef __SPU__
@@ -70,6 +72,7 @@ btVector3 btConvexInternalShape::localGetSupportingVertex(const btVector3& vec)c
return supVertex;
#else
btAssert(0);
return btVector3(0,0,0);
#endif //__SPU__

View File

@@ -30,14 +30,7 @@ public:
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
#ifndef __SPU__
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const= 0;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const= 0;
#endif //#ifndef __SPU__
const btVector3& getImplicitShapeDimensions() const
{

View File

@@ -43,7 +43,7 @@ btVector3 btConvexPointCloudShape::localGetSupportingVertexWithoutMargin(const b
for (int i=0;i<m_numPoints;i++)
{
btVector3 vtx = m_points[i] * m_localScaling;
btVector3 vtx = getScaledPoint(i);
newDot = vec.dot(vtx);
if (newDot > maxDot)
@@ -67,7 +67,7 @@ void btConvexPointCloudShape::batchedUnitVectorGetSupportingVertexWithoutMargin(
}
for (int i=0;i<m_numPoints;i++)
{
btVector3 vtx = m_points[i] * m_localScaling;
btVector3 vtx = getScaledPoint(i);
for (int j=0;j<numVectors;j++)
{
@@ -133,7 +133,7 @@ void btConvexPointCloudShape::getEdge(int i,btVector3& pa,btVector3& pb) const
void btConvexPointCloudShape::getVertex(int i,btVector3& vtx) const
{
vtx = m_points[i]*m_localScaling;
vtx = m_unscaledPoints[i]*m_localScaling;
}
int btConvexPointCloudShape::getNumPlanes() const

View File

@@ -23,15 +23,17 @@ subject to the following restrictions:
///The btConvexPointCloudShape implements an implicit convex hull of an array of vertices.
ATTRIBUTE_ALIGNED16(class) btConvexPointCloudShape : public btPolyhedralConvexShape
{
btVector3* m_points;
btVector3* m_unscaledPoints;
int m_numPoints;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
btConvexPointCloudShape(btVector3* points,int numPoints, bool computeAabb = true)
btConvexPointCloudShape(btVector3* points,int numPoints, const btVector3& localScaling,bool computeAabb = true)
{
m_localScaling = localScaling;
m_shapeType = CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE;
m_points = points;
m_unscaledPoints = points;
m_numPoints = numPoints;
if (computeAabb)
@@ -40,28 +42,33 @@ public:
void setPoints (btVector3* points, int numPoints, bool computeAabb = true)
{
m_points = points;
m_unscaledPoints = points;
m_numPoints = numPoints;
if (computeAabb)
recalcLocalAabb();
}
btVector3* getPoints()
SIMD_FORCE_INLINE btVector3* getUnscaledPoints()
{
return m_points;
return m_unscaledPoints;
}
const btVector3* getPoints() const
SIMD_FORCE_INLINE const btVector3* getUnscaledPoints() const
{
return m_points;
return m_unscaledPoints;
}
int getNumPoints() const
SIMD_FORCE_INLINE int getNumPoints() const
{
return m_numPoints;
}
SIMD_FORCE_INLINE btVector3 getScaledPoint( int index) const
{
return m_unscaledPoints[index] * m_localScaling;
}
#ifndef __SPU__
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;

View File

@@ -14,7 +14,6 @@ subject to the following restrictions:
*/
#include "btConvexShape.h"
#include "btConvexInternalShape.h"
#include "btTriangleShape.h"
#include "btSphereShape.h"
#include "btCylinderShape.h"
@@ -22,7 +21,18 @@ subject to the following restrictions:
#include "btConvexHullShape.h"
#include "btConvexPointCloudShape.h"
static btVector3 convexHullSupport (const btVector3& localDir, const btVector3* points, int numPoints)
btConvexShape::btConvexShape ()
{
}
btConvexShape::~btConvexShape()
{
}
static btVector3 convexHullSupport (const btVector3& localDir, const btVector3* points, int numPoints, const btVector3& localScaling)
{
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
btScalar newDot,maxDot = btScalar(-1e30);
@@ -41,7 +51,7 @@ static btVector3 convexHullSupport (const btVector3& localDir, const btVector3*
for (int i=0;i<numPoints;i++)
{
btVector3 vtx = points[i];// * m_localScaling;
btVector3 vtx = points[i] * localScaling;
newDot = vec.dot(vtx);
if (newDot > maxDot)
@@ -64,7 +74,7 @@ btVector3 btConvexShape::localGetSupportVertexWithoutMarginNonVirtual (const btV
break;
case BOX_SHAPE_PROXYTYPE:
{
btConvexInternalShape* convexShape = (btConvexInternalShape*)this;
btBoxShape* convexShape = (btBoxShape*)this;
const btVector3& halfExtents = convexShape->getImplicitShapeDimensions();
return btVector3(btFsels(localDir.x(), halfExtents.x(), -halfExtents.x()),
@@ -203,16 +213,16 @@ btVector3 btConvexShape::localGetSupportVertexWithoutMarginNonVirtual (const btV
case CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE:
{
btConvexPointCloudShape* convexPointCloudShape = (btConvexPointCloudShape*)this;
btVector3* points = convexPointCloudShape->getPoints ();
btVector3* points = convexPointCloudShape->getUnscaledPoints ();
int numPoints = convexPointCloudShape->getNumPoints ();
return convexHullSupport (localDir, points, numPoints);
return convexHullSupport (localDir, points, numPoints,convexPointCloudShape->getLocalScalingNV());
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
btConvexHullShape* convexHullShape = (btConvexHullShape*)this;
btVector3* points = convexHullShape->getPoints ();
btVector3* points = convexHullShape->getUnscaledPoints();
int numPoints = convexHullShape->getNumPoints ();
return convexHullSupport (localDir, points, numPoints);
return convexHullSupport (localDir, points, numPoints,convexHullShape->getLocalScalingNV());
}
break;
default:
@@ -237,174 +247,8 @@ btVector3 btConvexShape::localGetSupportVertexNonVirtual (const btVector3& local
localDirNorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
}
localDirNorm.normalize ();
switch (m_shapeType)
{
case SPHERE_SHAPE_PROXYTYPE:
{
return btVector3(0,0,0) + getMarginNonVirtual() * localDirNorm;
}
break;
case BOX_SHAPE_PROXYTYPE:
{
btConvexInternalShape* convexShape = (btConvexInternalShape*)this;
const btVector3& halfExtents = convexShape->getImplicitShapeDimensions();
return btVector3(localDir.getX() < 0.0f ? -halfExtents.x() : halfExtents.x(),
localDir.getY() < 0.0f ? -halfExtents.y() : halfExtents.y(),
localDir.getZ() < 0.0f ? -halfExtents.z() : halfExtents.z()) + getMarginNonVirtual() * localDirNorm;
}
break;
case TRIANGLE_SHAPE_PROXYTYPE:
{
btTriangleShape* triangleShape = (btTriangleShape*)this;
btVector3 dir(localDir.getX(),localDir.getY(),localDir.getZ());
btVector3* vertices = &triangleShape->m_vertices1[0];
btVector3 dots(dir.dot(vertices[0]), dir.dot(vertices[1]), dir.dot(vertices[2]));
btVector3 sup = vertices[dots.maxAxis()];
return btVector3(sup.getX(),sup.getY(),sup.getZ()) + getMarginNonVirtual() * localDirNorm;
}
break;
case CYLINDER_SHAPE_PROXYTYPE:
{
btCylinderShape* cylShape = (btCylinderShape*)this;
//mapping of halfextents/dimension onto radius/height depends on how cylinder local orientation is (upAxis)
btVector3 halfExtents = cylShape->getImplicitShapeDimensions();
btVector3 v(localDir.getX(),localDir.getY(),localDir.getZ());
int cylinderUpAxis = cylShape->getUpAxis();
int XX(1),YY(0),ZZ(2);
switch (cylinderUpAxis)
{
case 0:
{
XX = 1;
YY = 0;
ZZ = 2;
}
break;
case 1:
{
XX = 0;
YY = 1;
ZZ = 2;
}
break;
case 2:
{
XX = 0;
YY = 2;
ZZ = 1;
}
break;
default:
btAssert(0);
break;
};
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return btVector3(tmp.getX(),tmp.getY(),tmp.getZ()) + getMarginNonVirtual() * localDirNorm;
} else {
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return btVector3(tmp.getX(),tmp.getY(),tmp.getZ()) + getMarginNonVirtual() * localDirNorm;
}
}
break;
case CAPSULE_SHAPE_PROXYTYPE:
{
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
btCapsuleShape* capsuleShape = (btCapsuleShape*)this;
btVector3 halfExtents = capsuleShape->getImplicitShapeDimensions();
btScalar halfHeight = capsuleShape->getHalfHeight();
int capsuleUpAxis = capsuleShape->getUpAxis();
btScalar radius = capsuleShape->getRadius();
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,0,0);
pos[capsuleUpAxis] = halfHeight;
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
{
btVector3 pos(0,0,0);
pos[capsuleUpAxis] = -halfHeight;
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return btVector3(supVec.getX(),supVec.getY(),supVec.getZ()) + getMarginNonVirtual() * localDirNorm;
}
break;
case CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE:
{
btConvexPointCloudShape* convexPointCloudShape = (btConvexPointCloudShape*)this;
btVector3* points = convexPointCloudShape->getPoints ();
int numPoints = convexPointCloudShape->getNumPoints ();
return convexHullSupport (localDir, points, numPoints) + getMarginNonVirtual() * localDirNorm;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
btConvexHullShape* convexHullShape = (btConvexHullShape*)this;
btVector3* points = convexHullShape->getPoints ();
int numPoints = convexHullShape->getNumPoints ();
return convexHullSupport (localDir, points, numPoints) + getMarginNonVirtual() * localDirNorm;
}
break;
default:
#ifndef __SPU__
return this->localGetSupportingVertex (localDir);
#else
btAssert (0);
#endif
break;
}
// should never reach here
btAssert (0);
return btVector3 (btScalar(0.0f), btScalar(0.0f), btScalar(0.0f));
return localGetSupportVertexWithoutMarginNonVirtual(localDirNorm)+ getMarginNonVirtual() * localDirNorm;
}
/* TODO: This should be bumped up to btCollisionShape () */
@@ -420,7 +264,7 @@ btScalar btConvexShape::getMarginNonVirtual () const
break;
case BOX_SHAPE_PROXYTYPE:
{
btConvexInternalShape* convexShape = (btConvexInternalShape*)this;
btBoxShape* convexShape = (btBoxShape*)this;
return convexShape->getMarginNV ();
}
break;
@@ -483,7 +327,7 @@ void btConvexShape::getAabbNonVirtual (const btTransform& t, btVector3& aabbMin,
/* fall through */
case BOX_SHAPE_PROXYTYPE:
{
btConvexInternalShape* convexShape = (btConvexInternalShape*)this;
btBoxShape* convexShape = (btBoxShape*)this;
float margin=convexShape->getMarginNonVirtual();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
halfExtents += btVector3(margin,margin,margin);

View File

@@ -36,29 +36,26 @@ public:
BT_DECLARE_ALIGNED_ALLOCATOR();
btConvexShape ()
{
}
btConvexShape ();
virtual ~btConvexShape()
{
virtual ~btConvexShape();
}
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const = 0;
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const =0;
#ifndef __SPU__
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const= 0;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const= 0;
#endif //#ifndef __SPU__
////////
#ifndef __SPU__
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec) const=0;
#endif //#ifndef __SPU__
btVector3 localGetSupportVertexWithoutMarginNonVirtual (const btVector3& vec) const;
btVector3 localGetSupportVertexNonVirtual (const btVector3& vec) const;
btScalar getMarginNonVirtual () const;
void getAabbNonVirtual (const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const;
//notice that the vectors should be unit length
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const= 0;
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const =0;
@@ -75,6 +72,9 @@ public:
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const=0;
};

File diff suppressed because it is too large Load Diff

View File

@@ -64,17 +64,21 @@ void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result&
localTransA.getOrigin() -= positionOffset;
localTransB.getOrigin() -= positionOffset;
#ifdef __SPU__
btScalar marginA = m_minkowskiA->getMarginNonVirtual();
btScalar marginB = m_minkowskiB->getMarginNonVirtual();
#else
btScalar marginA = m_minkowskiA->getMargin();
btScalar marginB = m_minkowskiB->getMargin();
#ifdef TEST_NON_VIRTUAL
btScalar marginAv = m_minkowskiA->getMargin();
btScalar marginBv = m_minkowskiB->getMargin();
btScalar marginAv = m_minkowskiA->getMarginNonVirtual();
btScalar marginBv = m_minkowskiB->getMarginNonVirtual();
btAssert(marginA == marginAv);
btAssert(marginB == marginBv);
#endif //TEST_NON_VIRTUAL
#endif
gNumGjkChecks++;
@@ -119,16 +123,19 @@ void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result&
btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
#ifdef __SPU__
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
#else
btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
#ifdef TEST_NON_VIRTUAL
btVector3 pInAv = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
btVector3 qInBv = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
#endif
btVector3 pInA = m_minkowskiA->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInA);
btVector3 qInB = m_minkowskiB->localGetSupportVertexWithoutMarginNonVirtual(seperatingAxisInB);
#ifdef TEST_NON_VIRTUAL
btAssert((pInAv-pInA).length() < 0.0001);
btAssert((qInBv-qInB).length() < 0.0001);
#endif //
#endif //__SPU__
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);