Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
Bullet C-API b3ChangeDynamicsInfoSetSpinningFriction/RollingFriction/Resitution
b3PhysicsParamSetRestitutionVelocityThreshold, / pybullet.setPhysicsEngineParameter restitutionVelocityThreshold:
if the velocity is below this threshhold, the restitution is zero (this prevents energy buildup at near-resting state)
pybullet restitution.py example.
implement friction anchors, position friction correction, disabled by default. Use colObj->setCollisionFlag(flag | CF_HAS_FRICTION_ANCHOR); See test/RobotClientAPI/SlopeFrictionMain.cpp. In URDF or SDF, add <friction_anchor/> in <contact> section of <link> to enable.
PhysicsServer: properly restore old activation state after releasing picked object
btMultiBodyConstraintSolver: disable flip/flop of contact/friction constraint solving by default (it breaks some internal flaky unit tests)
(for example solverInfo().m_leastSquaresResidualThreshold = 1e-7 and use large m_numSolverIterations
disable sphere-sphere contact cache, it is buggy (some contact point stay in the cache, when sphere penetrates more than total margins)
tweak some gpu demo settings
Will also add Erin Catto's local implicit version from the GDC 2015 tutorial
Added demo for btGeneric6DofSpring2Constraint, thanks to Gabor Puhr
Add gfxBridge.autogenerateGraphicsObjects method for Bullet 2 demos in new framework (need to implement all Bullet 2 collision shape types...)
Use 1,1,1 for local scaling in btStaticPlaneShape
See http://www.youtube.com/watch?v=RV7sBAsKu4M and Bullet/Demos/RollingFrictionDemo
Fixes in FractureDemo (mouse picking constraint needs to be removed, otherwise constraint solver crashes/asserts)
Note that it can easily introduce instability at regular (60Hertz) simulation steps so it is generally best to not use the option.
If needed, use a very small internal step, such as 1000 Hertz (world->stepSimulation(dt,100,1./1000.f); or stepSimulation(1./1000.,0);
This should improve 'ccd' handling when using world->getDispatchInfo().m_useContinuous = true;body->setCcdSquareMotionThreshold(...); body->setCcdSquareMotionThreshold(...)
shoot smaller boxes (test)
use yellow instead of orange for contact point normals
tweak default erp and erp2 values, now split impulse is on by default (need to check it)
warmstarting for contact points was broken, fix in btPersistentManifold
enable split impulse by default (at the cost of some performance)
add the option for zero-length friction (instead of recomputing friction directions using btPlaneSpace), use the solver mode flag SOLVER_ALLOW_ZERO_LENGTH_FRICTION_DIRECTIONS
precompute lateral friction directions (in btManifoldResult)
remove the mConstraintRow[3] from btManifoldPoint, it just took a lot of memory with no benefits: fixed it in btParallelConstraintSolver
+ applied patch to mix double/single precision meshes independent from double/single precision Bullet build
Thanks to Ole for the patch, http://code.google.com/p/bullet/issues/detail?id=213
+ re-enable warming starting in constraint solver, it was disabled by accident
+ fix btConvexHullShape constructor, so accept vertices with non-16-byte striding
Thanks Shawn Baird for report and fix: http://code.google.com/p/bullet/issues/detail?id=204
improve CollisionDemo.cpp, show multi-contact generation using perturbation
improve ColladaConverter: add hinge/point 2 point constraint conversion support, add btScaledTriangleMeshShape support
Fix Dynamica MayaPlygin: remove 'active' flag, it has to be replaced by mass=0 for active, mass<>0 for passive
Added missing projectfiles
Fixed single-shot contact generation. it is disabled by default to improve performance
Bugfixes for character controller, thanks to John McCutchan for reporting
Constraint solver: better default settings
btDefaultAllocator: aligned allocator uses non-aligned allocator (instead of directly malloc/free)
disable memalign by default, use Bullet's aligned allocator
1) Add fast branchless SIMD support for constraint solver (Windows only until we get other contributions).
See resolveSingleConstraintRowGenericSIMD in Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
resolveSingleConstraintRowGenericSIMD can be used for all constraints, including contact, point 2 point, hinge, generic etc.
2) During this refactoring, all constraints support the obsolete 'solveConstraintObsolete' while we add 'getInfo1' and 'getInfo2' support.
This interface is almost identical interface to Open Dynamics Engine, to make it easier to port Dantzig LCP solver.
3) Some minor refactoring to reduce huge constructor overhead in math classes.
+ improved friction warm starting
+ made constraint solver configuration more consistent (moved m_solverMode into btContactSolverInfo)
+ reset timing in CDTestFramework after initialization (SAP init destorts timings)
+ make it easier to change default sizes for stack allocator in btDefaultCollisionConfiguration
+ fixed issue with persistent manifold, warmstarting values were not initialized properly
+ don't clear manifold in sphere-sphere collision (need warmstarting)
+ added support for 'split impulse', decouple positional error correction from velocity correction
This avoids adding momentum due to penetration correction, it can be tuned using following variables:
solverInfo.m_splitImpulse = true/false (disable/enable)
solverInfo.m_splitImpulsePenetrationThreshold (below this value, baumgarte/mixed velocity/penetration is used (cheaper, looks more plausible)
solverInfo.m_linearSlop (less jitter, when small amound of penetration is allowed)