contact force problems". The solver needs a lot of iterations, before the quality goes up (~ 1000)
Thanks to Gabor PUHR for the contribution!
Improved the btLemkeSolver.
Remove the sparse optimizations from the btMatrixX.h, replace it with explicit call to rowComputeNonZeroElements (only used in the btSolveProjectedGaussSeidel), it was likely slowing things down, without being useful.
Re-enable SIMD in the solver (was accidently disabled in Bullet 2.82 release)
with permission of the original author.
The Lemke implementation is not fully working yet:
1) we need to convert the lo-high LCP problem into a problem without the lo/high
2) we need to sort out the remaining instabilities, and report a failure if the max loopcount is reached etc.
We replaced the fmatvec library with our own LinearMath/btMatrixX.h, and STL std::vector with btAlignedObjectArray
Removed some warnings/potential issues: use fuzzyZero instead of isZero, and some warnings,
related to this issue 756
Apply patch for CMake config, see Issue 754 (Issue 753)
Fix a few issue with the MLCP solver: allow split impulse, and fix offset in friction dependencies
Added a PGS solver that uses the sparsity of the A matrix, just for testing (the equivalent sequential impulse solver is much faster, not having to allocate the big matrices)
The original version was written by Stephen Thompson.
I replaced Eigen math by Bullet LinearMath, and added a dedicated 6x6 matrix solver.
Also I integrated support for collisions/contact constraints between btMultiBody and btRigidBody, and de-activation support.
See Demos/FeatherstoneMultiBodyDemo/Win32FeatherstoneMultiBodyDemo.cpp for example usage.
There is currently only support for contact constraints for btMultiBody.
Next on the list will be adding support for joint limit constraint for btMultiBody.
The implementation is still experimental/untested, the quality will improve in upcoming Bullet releases.
So files created by the new double precision serialization of Bullet 2.82 cannot be read by old Bullet versions,
but double precision serialized file generated by older Bullet versions can be read by Bullet 2.82 or newer.
changes are backwards compatible (btBulletWorldImporter can load old .bullet files)
but not forwards compatible (constraints in new .bullet files are ignored/unrecognized by old Bullet SDK)
This commit is for Issue 734. Some more work needs to be done for btGImpactMeshShapeDoubleData and thus btStridingMeshInterfaceDoubleData and btMeshPartDoubleData
fix vehicle demo (heightfield is broken, when using very large scaling factor)
add btConeShape serialization, see Issue 725
add btGearConstraint get/set, see Issue 685 and Issue 671
add compound shape support to BulletXmlWorldImporter and fix some compile issue under Debian (hopefully)
object picking change in the demos: create a ball-socket picking constraint when holding shift while mouse dragging, otherwise a fixed (6dof) constraint
add assert in constraint solver, when both objects have their inertia tensor rows set to zero
btPolyhedralContactClipping: add edge-edge contact point in findSeparatingAxis (similar to the default GJK case)
See http://www.youtube.com/watch?v=RV7sBAsKu4M and Bullet/Demos/RollingFrictionDemo
Fixes in FractureDemo (mouse picking constraint needs to be removed, otherwise constraint solver crashes/asserts)
Note that it can easily introduce instability at regular (60Hertz) simulation steps so it is generally best to not use the option.
If needed, use a very small internal step, such as 1000 Hertz (world->stepSimulation(dt,100,1./1000.f); or stepSimulation(1./1000.,0);
(make sure to merge islands based on those predictive contacts too, added some check in the solver)
This fixes Issue 356.
Use same solver settings for AllBulletDemos
Make sure to embed the setCcdSweptSphereRadius inside the actual collision shape (for shoot box)
This should improve 'ccd' handling when using world->getDispatchInfo().m_useContinuous = true;body->setCcdSquareMotionThreshold(...); body->setCcdSquareMotionThreshold(...)
shoot smaller boxes (test)
use yellow instead of orange for contact point normals
tweak default erp and erp2 values, now split impulse is on by default (need to check it)
Applied picking cloth patch. Fixes Issue 646. Thanks to Dongsoo.
Applied patch Softbody updateConstraints. Fixes Issue 503. Thanks to Dave Bruce Phillips and Dongsoo.
Fix various warnigns under Mac OSX.
warmstarting for contact points was broken, fix in btPersistentManifold
enable split impulse by default (at the cost of some performance)
add the option for zero-length friction (instead of recomputing friction directions using btPlaneSpace), use the solver mode flag SOLVER_ALLOW_ZERO_LENGTH_FRICTION_DIRECTIONS
precompute lateral friction directions (in btManifoldResult)
remove the mConstraintRow[3] from btManifoldPoint, it just took a lot of memory with no benefits: fixed it in btParallelConstraintSolver